Abstract: The rapid advancement of big data and artificial intelligence has heightened the demand for improved data processing efficiency. Beyond optimizing algorithms, developing new computing elements based on physical morphology offers an alternative to reduce algorithm iteration. Nanosilver-based neuromorphic networks, utilizing silver nanomaterials as structural units, can mimic the information processing capabilities of the human nervous system, making them promising for neuromorphic and brain-inspired computing applications. To ensure stable operation and ease of fabrication, researchers have implemented various improvements to the material system and fabrication processes. This paper reviews recent progress in nanosilver-based neuromorphic networks, focusing on preparation methods such as drop-casting, random copper seed-induced self-assembly, and patterned copper seed self-assembly across different material systems. Additionally, it summarizes current applications and discusses future development and applicative prospects of this technology.
韩坤原, 柳凤琦, 叶益聪. 纳米银基神经形态网络的制备与应用研究进展[J]. 材料导报, 2025, 39(19): 24070124-11.
HAN Kunyuan, LIU Fengqi, YE Yicong. Research Progress on the Formulation and Application of Nanosilver-based Neuromorphic Networks. Materials Reports, 2025, 39(19): 24070124-11.
1 Roy K, Jaiswal A, Panda P. Nature, 2019, 575, 607. 2 Turing A M. In:Mechanical intelligence, Ince D C, ed. , Elsevier Science Publishers, Netherlands, 1992, pp. 10. 3 Mead C. Nature Electronics, 2020, 3, 434. 4 Chua L O. IEEE Transactions on Circuit Theory, 1971, 18(5), 507. 5 Wang Z R, Wu H Q, Burr G W, et al. Nature Reviews Materials, 2020, 5(3), 184. 6 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453, 81. 7 Bellew A T, Manning H G, da Rocha Claudia Gomes, et al. ACS Nano, 2015, 9(11), 1142. 8 Avizienis A V, Sillin H O, Martin-Olmos C, et al. PLoS ONE, 2012, 7(8), e42772. 9 Lilak S, Woods W, Scharnhorst K, et al. Frontiers in Nanotechnology, 2021, 3, 675792. 10 Terabe K, Nakayama T, Hasegawa T, et al. Journal of Applied Physics, 2002, 91, 10113. 11 Terabe K, Hasegawa T, Nakayama T, et al. Nature, 2005, 433, 48. 12 Guo X, Schindler C, Menzel S, et al. Applied Physics Letters, 2007, 91, 133513. 13 Yang J J, Strukov D B, Stewart D R. Nature Nanotechnology, 2013, 8, 17. 14 Wang Z R, Joshi S, Savel’ev A E, et al. Nature Materials, 2016, 16, 102. 15 Shukla N, Ghosh R K, Grisafe B, et al. In:Conference Record of the 2017 IEEE International Electron Devices Meeting. San Francisco, California, 2017, pp. 89. 16 Wang W, Wang M, Ambrosi E, et al. Nature Communications, 2019, 10, 81. 17 Zhao X L, Ma J, Xiao X H, et al. Advanced Materials, 2018, 30, 1705193. 18 Valov L, Sapezanskaia I, Nayak A, et al. Nature Materials, 2012, 11, 533. 19 Liu Q, Sun J, Lv H B, et al. Advanced Materials, 2012, 24, 1848. 20 Yuan F, Zhang Z, Liu C R, et al. ACS Nano, 2017, 11, 4099. 21 Diaz-Alvarez A, Higuchi R, Li Q, et al. AIP Advances, 2020, 10(2), 025134. 22 Zhang W B, Yao P, Gao B, et al. Science, 2023, 381(6663), 1207. 23 Kuncic Z, Nakayama T. Advances in Physics:X, 2021, 6(1), 1894234. 24 Mallinson B, Shirai S, Acharya S K, et al. Science Advances, 2019, 5(11), eaaw8438. 25 Du C, Cai F X, Zidan M A, et al. Nature Communications, 2017, 8, 2204. 26 Mantas Lukoševičius, Herbert Jaeger. Computer science review, 2009, 3, 128. 27 Daniels R K, Mallinson J B, Heywood Z E, et al. Neural Networks, 2022, 154, 122. 28 Tanaka G, Yamane T, Héroux J B, et al. Neural Networks, 2019, 115, 110. 29 Lepri S, Giacomelli G, Politi A, et al. Physica D:Nonlinear Phenomena, 1994, 70(3), 235. 30 Bürger J, Teuscher C. In:The 2013 IEEE/ACM International Symposium on Nanoscale Architectures. New York, 2013, pp. 1. 31 Brunner D, Fischer I. Optics Letters, 2015, 40, 3854. 32 Petre P, Cruz-Albrecht J. In:IEEE International Conference on Rebooting Computing (ICRC). San Diego, CA, 2016, pp. 4. 33 Yi Y, Liao Y B, Wang B, et al. Microprocessors and Microsystems, 2016, 46, 175. 34 Vandoorne K, Dambre J, Verstraeten D, et al. IEEE Transactions on Neural Networks, 2011, 22, 1469. 35 Hermans M, Dambre J, Bienstman P. IEEE Transactions on Neural Networks, 2015, 26, 1545. 36 Kelsey Scharnhorst, Walt Woods, Christof Teuscher, et al. In:Confe-rence Record of the 2017 IEEE/ACM International Symposium on Nanoscale Architectures. Newport, RI, 2017, pp. 135. 37 Hadiyawarman, Yuki Usami, Takumi Kotooka, et al. Japanese Journal of Applied Physics, 2021, 60, SCCF02. 38 Kotooka T, Lilak S, A Stieg J Gimzewski, et al. Preprint Available at Research Square, 2021. DOI:10.21203/rs.3.rs-322405/v1. 39 Milano G, Cultrera A, Boarino L, et al. Nature Communications, 2023, 14, 5723. 40 Sandouk E J, Gimzewski J K, Stieg A Z. Science and Technology of Advanced Materials, 2015, 16(4), 045004. 41 Demis E C, Aguilera R, Scharnhorst K, et al. Japanese Journal of Applied Physics, 2016, 55(11), 1102B2. 42 Demis E C, Aguilera R, Sillin H O, et al. Nanotechnology, 2015, 26(20), 204003. 43 Stieg A Z, Avizienis A V, Sillin H O, et al. Japanese Journal of Applied Physics, 2014, 53(1), 01AA02. 44 Hadiyawarman, Masanori Eguchi, Hirofumi Tanaka. Japanese Journal of Applied Physics, 2020, 59(1), 015001. 45 Milano G, Pedretti G, Fretto M, et al. Advanced Intelligent Systems, 2020, 2(8), 2000096. 46 Sun Y G, Mayers B, Herricks T, et al. Nano Letters, 2003, 3(7), 956. 47 Wiley B, Sun Y G, Xia Y N. Langmuir, 2005, 21(18), 8078. 48 Korte K E, Skrabalak S E, Xia Y N. Journal of Materials Chemistry, 2008, 18(4), 438. 49 Schuette W M, Buhro W E. ACS Nano, 2013, 7(5), 3845. 50 Zhang K L, Du Y G, Chen S M. Organic Electronics, 2015, 26, 381. 51 Lu G X. Chemistry Letters, 2008, 37(5), 515. 52 Xiong J Y, Han C, Li W J, et al. CrystEngComm, 2016, 18(6), 931. 53 Sillin H O, Aguilera R, Shieh H-H, et al. Nanotechnology, 2013, 24(38), 384004. 54 Senthil K P, Sunandana C S. Thin Solid Films, 1998, 323(1), 110. 55 Liang X F, Chen Y, Shi L, et al. Journal of Physics D:Appplied Physics, 2007, 40(16), 4767. 56 Marhoun F, Jiro N. Journal of Applied Physics, 2000, 88(2), 813. 57 Moon G D, Jeong U. Langmuir, 2008, 25(1), 459. 58 Schoen D T, Xia C, Cui Y, et al. Journal of the American Chemical Society, 2007, 129, 4116. 59 Hwang J Y, Shim Y, Yoon S-M, et al. RSC Advances, 2016, 6(37), 30973. 60 Wang J, Jiu J T, Araki Teppei, et al. Nanomicro Lett, 2015, 7(1), 52. 61 Diaz-Alvarez A, Higuchi R, Sanz-Leon P, et al. Scientific Reports, 2019, 9(1), 14920. 62 Nirmalraj P N, Bellew A T, Bell A P, et al. Nano Letters, 2012, 12(11), 5967. 63 Milano G, Cultrera A, Boarino L, et al. Nature communications, 2023, 14(1), 5723. 64 Yang H Y, Wang Z, Guo X Y, et al. ACS applied materials & interfaces, 2020, 12(30), 34374. 65 Krishnan K, Aono M, Terabe K, et al. J. Phys. D:Appl. Phys, 2019, 52, 445301. 66 Krishnan K, Aono M, Terabe K, et al. Journal of Physics D:Applied Physics, 2019, 52(44), 3. 67 Takumi Kotooka, Yuichiro Tanaka, Hakaru Tamukoh, et al. Applied Physics Express, 2023, 16(1), 014002. 68 Ohno T, Hasegawa T, Tsuruoka T, et al. Nature Materials, 2011, 10(8), 594. 69 Ebbinghaus H. Ann Neurosci, 2013, 20(4), 155. 70 Zhu R M, Lilak S, Loeffler A, et al. Nature Communications, 2023, 14(1), 6697. 71 Milano G, Pedretti G, Montano K, et al. Nature materials, 2022, 21(2), 200.