Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24070124-11    https://doi.org/10.11896/cldb.24070124
  金属与金属基复合材料 |
纳米银基神经形态网络的制备与应用研究进展
韩坤原, 柳凤琦, 叶益聪*
国防科技大学空天科学学院,长沙 410073
Research Progress on the Formulation and Application of Nanosilver-based Neuromorphic Networks
HAN Kunyuan, LIU Fengqi, YE Yicong*
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 25793KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着大数据和人工智能技术的快速发展,提升数据处理效率的需求日益增加。除了优化算法外,开发基于物理形态的新型计算元件也能减少算法迭代。纳米银基神经形态网络是一种以银纳米材料为结构单元构筑形成的类神经网络框架,能够模拟人体神经系统对信息进行处理,因而在神经形态计算和类脑计算领域具有极高的应用潜力。为确保其稳定运行和制备方便,研究人员对其材料体系和制备工艺进行了一系列改进。基于近年来国内外纳米银基神经形态网络的发展现状,本文根据不同的材料体系,重点介绍了神经形态网络的制备方法,如滴涂法、随机铜种子诱导自组装法以及规则阵列铜种子自组装法等,总结了纳米银基神经形态网络的应用现状,并对其未来发展和应用前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩坤原
柳凤琦
叶益聪
关键词:  纳米银  神经形态网络  自组装  非线性映射  无机突触  忆阻器  原子开关    
Abstract: The rapid advancement of big data and artificial intelligence has heightened the demand for improved data processing efficiency. Beyond optimizing algorithms, developing new computing elements based on physical morphology offers an alternative to reduce algorithm iteration. Nanosilver-based neuromorphic networks, utilizing silver nanomaterials as structural units, can mimic the information processing capabilities of the human nervous system, making them promising for neuromorphic and brain-inspired computing applications. To ensure stable operation and ease of fabrication, researchers have implemented various improvements to the material system and fabrication processes. This paper reviews recent progress in nanosilver-based neuromorphic networks, focusing on preparation methods such as drop-casting, random copper seed-induced self-assembly, and patterned copper seed self-assembly across different material systems. Additionally, it summarizes current applications and discusses future development and applicative prospects of this technology.
Key words:  nano-silver    neuromorphic networks    self-organization    nonlinear mapping    inorganic synapses    memristors    atomic switch
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TB31  
通讯作者:  *叶益聪,博士,国防科技大学空天科学学院教授、博士研究生导师。目前主要从事机器学习辅助材料设计等方面的研究。18505993519@163.com   
作者简介:  韩坤原,国防科技大学空天科学学院硕士研究生,在叶益聪教授的指导下进行研究。目前主要研究领域为纳米银基神经形态计算材料的研究。
引用本文:    
韩坤原, 柳凤琦, 叶益聪. 纳米银基神经形态网络的制备与应用研究进展[J]. 材料导报, 2025, 39(19): 24070124-11.
HAN Kunyuan, LIU Fengqi, YE Yicong. Research Progress on the Formulation and Application of Nanosilver-based Neuromorphic Networks. Materials Reports, 2025, 39(19): 24070124-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070124  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24070124
1 Roy K, Jaiswal A, Panda P. Nature, 2019, 575, 607.
2 Turing A M. In:Mechanical intelligence, Ince D C, ed. , Elsevier Science Publishers, Netherlands, 1992, pp. 10.
3 Mead C. Nature Electronics, 2020, 3, 434.
4 Chua L O. IEEE Transactions on Circuit Theory, 1971, 18(5), 507.
5 Wang Z R, Wu H Q, Burr G W, et al. Nature Reviews Materials, 2020, 5(3), 184.
6 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453, 81.
7 Bellew A T, Manning H G, da Rocha Claudia Gomes, et al. ACS Nano, 2015, 9(11), 1142.
8 Avizienis A V, Sillin H O, Martin-Olmos C, et al. PLoS ONE, 2012, 7(8), e42772.
9 Lilak S, Woods W, Scharnhorst K, et al. Frontiers in Nanotechnology, 2021, 3, 675792.
10 Terabe K, Nakayama T, Hasegawa T, et al. Journal of Applied Physics, 2002, 91, 10113.
11 Terabe K, Hasegawa T, Nakayama T, et al. Nature, 2005, 433, 48.
12 Guo X, Schindler C, Menzel S, et al. Applied Physics Letters, 2007, 91, 133513.
13 Yang J J, Strukov D B, Stewart D R. Nature Nanotechnology, 2013, 8, 17.
14 Wang Z R, Joshi S, Savel’ev A E, et al. Nature Materials, 2016, 16, 102.
15 Shukla N, Ghosh R K, Grisafe B, et al. In:Conference Record of the 2017 IEEE International Electron Devices Meeting. San Francisco, California, 2017, pp. 89.
16 Wang W, Wang M, Ambrosi E, et al. Nature Communications, 2019, 10, 81.
17 Zhao X L, Ma J, Xiao X H, et al. Advanced Materials, 2018, 30, 1705193.
18 Valov L, Sapezanskaia I, Nayak A, et al. Nature Materials, 2012, 11, 533.
19 Liu Q, Sun J, Lv H B, et al. Advanced Materials, 2012, 24, 1848.
20 Yuan F, Zhang Z, Liu C R, et al. ACS Nano, 2017, 11, 4099.
21 Diaz-Alvarez A, Higuchi R, Li Q, et al. AIP Advances, 2020, 10(2), 025134.
22 Zhang W B, Yao P, Gao B, et al. Science, 2023, 381(6663), 1207.
23 Kuncic Z, Nakayama T. Advances in Physics:X, 2021, 6(1), 1894234.
24 Mallinson B, Shirai S, Acharya S K, et al. Science Advances, 2019, 5(11), eaaw8438.
25 Du C, Cai F X, Zidan M A, et al. Nature Communications, 2017, 8, 2204.
26 Mantas Lukoševičius, Herbert Jaeger. Computer science review, 2009, 3, 128.
27 Daniels R K, Mallinson J B, Heywood Z E, et al. Neural Networks, 2022, 154, 122.
28 Tanaka G, Yamane T, Héroux J B, et al. Neural Networks, 2019, 115, 110.
29 Lepri S, Giacomelli G, Politi A, et al. Physica D:Nonlinear Phenomena, 1994, 70(3), 235.
30 Bürger J, Teuscher C. In:The 2013 IEEE/ACM International Symposium on Nanoscale Architectures. New York, 2013, pp. 1.
31 Brunner D, Fischer I. Optics Letters, 2015, 40, 3854.
32 Petre P, Cruz-Albrecht J. In:IEEE International Conference on Rebooting Computing (ICRC). San Diego, CA, 2016, pp. 4.
33 Yi Y, Liao Y B, Wang B, et al. Microprocessors and Microsystems, 2016, 46, 175.
34 Vandoorne K, Dambre J, Verstraeten D, et al. IEEE Transactions on Neural Networks, 2011, 22, 1469.
35 Hermans M, Dambre J, Bienstman P. IEEE Transactions on Neural Networks, 2015, 26, 1545.
36 Kelsey Scharnhorst, Walt Woods, Christof Teuscher, et al. In:Confe-rence Record of the 2017 IEEE/ACM International Symposium on Nanoscale Architectures. Newport, RI, 2017, pp. 135.
37 Hadiyawarman, Yuki Usami, Takumi Kotooka, et al. Japanese Journal of Applied Physics, 2021, 60, SCCF02.
38 Kotooka T, Lilak S, A Stieg J Gimzewski, et al. Preprint Available at Research Square, 2021. DOI:10.21203/rs.3.rs-322405/v1.
39 Milano G, Cultrera A, Boarino L, et al. Nature Communications, 2023, 14, 5723.
40 Sandouk E J, Gimzewski J K, Stieg A Z. Science and Technology of Advanced Materials, 2015, 16(4), 045004.
41 Demis E C, Aguilera R, Scharnhorst K, et al. Japanese Journal of Applied Physics, 2016, 55(11), 1102B2.
42 Demis E C, Aguilera R, Sillin H O, et al. Nanotechnology, 2015, 26(20), 204003.
43 Stieg A Z, Avizienis A V, Sillin H O, et al. Japanese Journal of Applied Physics, 2014, 53(1), 01AA02.
44 Hadiyawarman, Masanori Eguchi, Hirofumi Tanaka. Japanese Journal of Applied Physics, 2020, 59(1), 015001.
45 Milano G, Pedretti G, Fretto M, et al. Advanced Intelligent Systems, 2020, 2(8), 2000096.
46 Sun Y G, Mayers B, Herricks T, et al. Nano Letters, 2003, 3(7), 956.
47 Wiley B, Sun Y G, Xia Y N. Langmuir, 2005, 21(18), 8078.
48 Korte K E, Skrabalak S E, Xia Y N. Journal of Materials Chemistry, 2008, 18(4), 438.
49 Schuette W M, Buhro W E. ACS Nano, 2013, 7(5), 3845.
50 Zhang K L, Du Y G, Chen S M. Organic Electronics, 2015, 26, 381.
51 Lu G X. Chemistry Letters, 2008, 37(5), 515.
52 Xiong J Y, Han C, Li W J, et al. CrystEngComm, 2016, 18(6), 931.
53 Sillin H O, Aguilera R, Shieh H-H, et al. Nanotechnology, 2013, 24(38), 384004.
54 Senthil K P, Sunandana C S. Thin Solid Films, 1998, 323(1), 110.
55 Liang X F, Chen Y, Shi L, et al. Journal of Physics D:Appplied Physics, 2007, 40(16), 4767.
56 Marhoun F, Jiro N. Journal of Applied Physics, 2000, 88(2), 813.
57 Moon G D, Jeong U. Langmuir, 2008, 25(1), 459.
58 Schoen D T, Xia C, Cui Y, et al. Journal of the American Chemical Society, 2007, 129, 4116.
59 Hwang J Y, Shim Y, Yoon S-M, et al. RSC Advances, 2016, 6(37), 30973.
60 Wang J, Jiu J T, Araki Teppei, et al. Nanomicro Lett, 2015, 7(1), 52.
61 Diaz-Alvarez A, Higuchi R, Sanz-Leon P, et al. Scientific Reports, 2019, 9(1), 14920.
62 Nirmalraj P N, Bellew A T, Bell A P, et al. Nano Letters, 2012, 12(11), 5967.
63 Milano G, Cultrera A, Boarino L, et al. Nature communications, 2023, 14(1), 5723.
64 Yang H Y, Wang Z, Guo X Y, et al. ACS applied materials & interfaces, 2020, 12(30), 34374.
65 Krishnan K, Aono M, Terabe K, et al. J. Phys. D:Appl. Phys, 2019, 52, 445301.
66 Krishnan K, Aono M, Terabe K, et al. Journal of Physics D:Applied Physics, 2019, 52(44), 3.
67 Takumi Kotooka, Yuichiro Tanaka, Hakaru Tamukoh, et al. Applied Physics Express, 2023, 16(1), 014002.
68 Ohno T, Hasegawa T, Tsuruoka T, et al. Nature Materials, 2011, 10(8), 594.
69 Ebbinghaus H. Ann Neurosci, 2013, 20(4), 155.
70 Zhu R M, Lilak S, Loeffler A, et al. Nature Communications, 2023, 14(1), 6697.
71 Milano G, Pedretti G, Montano K, et al. Nature materials, 2022, 21(2), 200.
[1] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[2] 薛敏, 芦卓妍, 俞露露, 丁瑶, 陈茎. 基于芳香羧酸配体的有机凝胶、金属凝胶的制备及流变性能[J]. 材料导报, 2025, 39(3): 23090162-6.
[3] 施纯言, 张程, 毕冉, 李毅翔, 何瑞钰, 袁俊尉, 李阳. 基于新型有机-无机杂化材料的忆阻器在人工突触与神经形态计算领域的应用研究进展[J]. 材料导报, 2025, 39(14): 23080054-13.
[4] 王淼儒, 柴晓杰, 闫泽宇, 索丁丁, 冀健龙. 高稳定性氧化镓基忆阻器的构筑和神经形态计算应用[J]. 材料导报, 2025, 39(11): 25020107-6.
[5] 刘菁, 张建, 赵波. 光电忆阻器用于突触仿生领域的研究进展[J]. 材料导报, 2024, 38(4): 22060027-10.
[6] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[7] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[8] 余志强, 徐佳敏, 韩旭, 陈诚, 曲信儒, 唐锦, 孙子君, 徐智谋. 金红石TiO2纳米线忆阻器的制备及阻变存储机制[J]. 材料导报, 2024, 38(13): 23020160-7.
[9] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[10] 秦肖雲, 邵文龙, 田宽, 姜利英, 罗聃. 纳米粒子自组装超结构的制备及基于构效关系的性能[J]. 材料导报, 2023, 37(17): 21120161-12.
[11] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[12] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[13] 史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
[14] 刘恒昌, 陈凯. 两面神胶束的构筑及应用[J]. 材料导报, 2023, 37(10): 21120086-8.
[15] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed