Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24070051-7    https://doi.org/10.11896/cldb.24070051
  金属与金属基复合材料 |
基于NSGA-Ⅱ的双迷宫流道液冷板结构优化设计
杨涵, 刘宁豪, 高强*, 何轩, 杨广丰
长安大学汽车学院,西安 710018
Optimized Design of Double Labyrinth Runner Liquid Cooling Plate Structure Based on NSGA-Ⅱ
YANG Han, LIU Ninghao, GAO Qiang*, HE Xuan, YANG Guangfeng
School of Automobile, Chang'an University, Xi'an 710018, China
下载:  全 文 ( PDF ) ( 10530KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池在工作过程中会产生大量的热,如果电池组温度过高或电池组间温差过大,将严重影响其性能和使用寿命。设计良好的液冷板流道结构是解决锂离子电池工作过程中出现高温升和温度分布不均匀问题的关键。本工作设计了一种新型双迷宫流道液冷板,利用数值模拟对所设计的双迷宫流道液冷板和传统蛇形流道液冷板的冷却性能进行对比。结果表明,双迷宫流道液冷板的冷却性能更优。利用单因子分析法分析了冷却液流向、液冷板放置方向和结构参数对电池组冷却性能的影响;以电池组最高温度和最大温差为目标函数,建立液冷板结构参数变量与目标函数之间的代理模型,采用NSGA-Ⅱ优化算法对液冷板的结构参数进行了优化;首次采用熵权法选取了最优解,改善了其他研究在选取最优解时受主观影响的缺陷。仿真结果表明,优化后的结构使电池组最大温差降低了29.1%,电池组的均温性更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨涵
刘宁豪
高强
何轩
杨广丰
关键词:  锂离子电池  双迷宫流道  NSGA-Ⅱ  帕累托前沿  熵权法    
Abstract: Lithium-ion batteries will generate significant heat during operation. The excess temperature of the battery pack or the large temperature variations between packs may severely damage their performance and lifespan. A well-designed liquid-cooling plate with a runner structure is crucial to address these issues. In this work, a novel double labyrinth runner liquid cooling plate was designed, the cooling performance of this plate was compared with that of traditional serpentine runner liquid cooling plate with numerical simulations. It demonstrated a superior effectiveness of the plate design. The impact of coolant flow direction, placement orientation of the liquid-cooled plate, and structural parameters on battery pack cooling performance was analyzed using single-factor analysis. Taking the maximum temperature and temperature differences of battery pack as objective functions, an agent-based model between the structural parameters and objective functions of the liquid-cooled plate was established. The NSGA-II optimization algorithm was adopted to optimize these structural parameters. The entropy weighting method was employed for the first time to select the optimal solution, mitigating subjective biases observed in prior studies. Simulation results indicate that the optimized structure reduces maximum battery pack temperature differences by 29.1%, enhancing temperature uniformity across the pack.
Key words:  lithium-ion battery    double labyrinth flow channel    NSGA-II    Pareto front    entropy weight method
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TM911  
基金资助: 国家自然科学基金(51878066)
通讯作者:  高强,博士,长安大学汽车学院教授、硕士研究生导师。目前主要从事智能汽车、智能物流和电池管理等方面的研究。gaoqiang@chd.edu.cn   
作者简介:  杨涵,长安大学汽车学院硕士研究生,目前主要研究领域为电池热管理。
引用本文:    
杨涵, 刘宁豪, 高强, 何轩, 杨广丰. 基于NSGA-Ⅱ的双迷宫流道液冷板结构优化设计[J]. 材料导报, 2025, 39(15): 24070051-7.
YANG Han, LIU Ninghao, GAO Qiang, HE Xuan, YANG Guangfeng. Optimized Design of Double Labyrinth Runner Liquid Cooling Plate Structure Based on NSGA-Ⅱ. Materials Reports, 2025, 39(15): 24070051-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070051  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24070051
1 Yu L, Li Y P. Journal of Cleaner Production, 2019, 207, 772787.
2 Li H, Xiao X, Wang Y, et al. Applied Thermal Engineering, 2020, 180, 115795.
3 Etacheri V, Marom R, Elazari R, et al. Energy & Environmental Science, 2011, 4(9), 32433262.
4 Saw L H, Poon H M, San Thiam H, et al. Applied Energy, 2018, 223, 146158.
5 Huang Q, Li X, Zhang G, et al. Applied Thermal Engineering, 2021, 183, 116151.
6 Ping P, Kong D, Zhang J, et al. Journal of Power Sources, 2018, 398, 5566.
7 Li X, Zhao J, Duan J, et al. Journal of Energy Storage, 2022, 49, 104113.
8 Mustafa J. Journal of Energy Storage, 2022, 48, 103959.
9 Mbulu H, Laoonual Y, Wongwises S. Case Studies in Thermal Engineering, 2021, 26, 101029.
10 Shi S, Xie Y, Li M, et al. Energy Conversion and Management, 2017, 138, 8496.
11 Fan X, Meng C, Yang Y, et al. Journal of Energy Storage, 2023, 72, 108239.
12 Liang L, Zhao Y, Diao Y, et al. Energy, 2021, 235, 121433.
13 Li Z Q, Sun G Q, Ba Y C, et al. Cryogenics & Superconductivity, 2023(8), 11 (in Chinese).
李志强, 孙广强, 巴义春, 等. 低温与超导, 2023(8), 11.
14 Zhang Q, Zhang C H, Kang Y J. Automobile Technology, 2023(9), 14 (in Chinese).
张荃, 张春化, 康渝佳. 汽车技术, 2023(9), 14.
15 Wang C H, Xiong X, Gao Q J, et al. Journal of Mechanical Engineering, 2023, 59(22), 150162 (in Chinese).
汪朝晖, 熊肖, 高全杰, 等. 机械工程学报, 2023, 59(22), 150162.
16 Liu H, Gao X, Zhao J, et al. Renewable Energy, 2022, 199, 640652.
17 Bernardi D, Pawlikowski E, Newman J. Journal of the Electrochemical Society, 1985, 132(1), 5.
18 He X. Research on Thermalmanagement system based on liquid cooled vehicle power Lithium-ion battery Pack. Master′s Thesis, Chang'an University, China, 2023(in Chinese).
何轩. 液冷式车用锂离子动力电池组热管理系统研究. 硕士学位论文, 长安大学, 2018.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[3] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[4] 张笑儒, 宋静, 罗来马, 孙宏骞, 赵聪聪, 田硕, 田亮亮, 吴玉程. 固态锂离子电池电解质材料应用性能的研究进展[J]. 材料导报, 2025, 39(13): 24060166-20.
[5] 张玲玲, 郏永强, 顾星宸, 张子豪, 巴志新. 锂离子电池正极集流体用涂碳铝箔的研究进展[J]. 材料导报, 2025, 39(12): 24030022-6.
[6] 李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
[7] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[8] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[9] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[10] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[11] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[12] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[13] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[14] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[15] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed