Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24070044-7    https://doi.org/10.11896/cldb.24070044
  金属与金属基复合材料 |
TiCN/AlSi10Mg复合材料激光选区熔化过程多物理场建模及数值模拟
倪小南1, 王安森1, 胡子健1, 杨温鑫1, 罗永康1, 胡振杰1, 邓欣1,2,*
1 广东工业大学机电工程学院,广州 510006
2 广东金瓷三维技术有限公司,广东 佛山 528225
Multi-physics Modeling and Numerical Simulation of Selective Laser Melting Process of TiCN/AlSi10Mg Composites
NI Xiaonan1, WANG Ansen1, HU Zijian1, YANG Wenxin1, LUO Yongkang1, HU Zhenjie1, DENG Xin1,2,*
1 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
2 Guangdong Metal Ceramic 3D Technology Co., Ltd., Foshan 528225, Guangdong, China
下载:  全 文 ( PDF ) ( 34248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当前在金属基复合材料激光增材制造中针对陶瓷颗粒增强相作用机制的研究非常有限。因此,本研究采用激光选区熔化(SLM)技术制备了TiCN增强AlSi10Mg金属基复合材料(MMCs),研究了在激光功率为300 W下不同扫描速度对熔池热动力学及增强颗粒运动行为的影响。建立了包含固-液-气三相统一的多相流模型,并通过将相场(PF)法与粒子追踪模型耦合,成功求解了增强颗粒的运动行为。研究发现多物理场数值模拟与实验结果相吻合,验证了所构建数值模型的有效性。SLM过程经历了熔化坍塌、润湿铺展和冷却凝固三个阶段,熔池液面波动幅值和熔池速度均随扫描速度的增加而减小。气化反冲压力、Marangoni力和表面张力是熔池演化的主要驱动力,分别是熔池液面凹陷、环流效应和液面震荡的主要诱因。其中,Marangoni力产生的环流效应对陶瓷增强颗粒在熔池中的重排和分散行为具有重要贡献,是调控增强相均匀分布的有效物理机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪小南
王安森
胡子健
杨温鑫
罗永康
胡振杰
邓欣
关键词:  激光选区熔化  陶瓷增强颗粒  熔池演化  驱动力  分散机制    
Abstract: Current scholarly investigations into the mechanisms underlying the role of ceramic particulate reinforcement within the context of laser additive manufacturing for metal matrix composites remain significantly constrained. This study employed selective laser melting (SLM) to fabricate TiCN-reinforced AlSi10Mg metal matrix composites (MMCs), and investigated the impact of varying scan speeds at a laser power of 300 W on the melt pool thermodynamics and particle motion behavior. A multiphase flow model incorporating solid, liquid, and gas phases was established, and by coupling the phase-field (PF) method with a particle tracking model, the particle motion was successfully simulated. The findings show that the numerical simulations agreed well with experimental results, validating the effectiveness of the constructed model. The SLM process consists of melting collapse, wetting spreading, and cooling solidification stages. Both the amplitude of melt pool surface fluctuations and melt pool velocity decrease with increasing scan speed. Vaporization recoil pressure, Marangoni forces, and surface tension are the primary driving forces of melt pool evolution, causing melt pool depression, vortex formation, and surface oscillations, respectively. Notably, Marangoni-induced vortices significantly influenced the rearrangement and dispersion of ceramic particles within the melt pool, providing an effective physical mechanism for controlling the uniform distribution of the reinforcement phase.
Key words:  selective laser melting    ceramic reinforced particles    molten pool evolution    driving forces    particle dispersion mechanisms
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TB333  
基金资助: 2019佛山市科技创新团队项目(FS0AA-KJ919-4402-0023)
通讯作者:  邓欣,广东工业大学机电工程学院教授、博士研究生导师。主要从事金属增材制造,陶瓷结构增韧机理,硬质合金及超硬工具研究和复合材料粉体制备研究。dengxin@gdut.edu.cn   
作者简介:  倪小南,广东工业大学机电工程学院博士研究生,主要从事金属及金属基复合材料SLM增材制造技术研究。
引用本文:    
倪小南, 王安森, 胡子健, 杨温鑫, 罗永康, 胡振杰, 邓欣. TiCN/AlSi10Mg复合材料激光选区熔化过程多物理场建模及数值模拟[J]. 材料导报, 2025, 39(15): 24070044-7.
NI Xiaonan, WANG Ansen, HU Zijian, YANG Wenxin, LUO Yongkang, HU Zhenjie, DENG Xin. Multi-physics Modeling and Numerical Simulation of Selective Laser Melting Process of TiCN/AlSi10Mg Composites. Materials Reports, 2025, 39(15): 24070044-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070044  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24070044
1 Debroy T, Wei H L, Zuback J, et al. Progress in Materials Science, 2018, 92, 112.
2 Herzog D, Seyda V, Wycisk E, et al. Acta Materialia, 2016, 117, 371.
3 Cooper D E, Blundell N, Maggs S, et al. Journal of Materials Processing Technology, 2013, 213(12), 2191.
4 Matli R P, Shakoor A R, Mohamed A M A, et al. Metals, 2016, 6(7), 143.
5 Zhang L, Wei S S, Song B, et al. Aeronautical Manufacturing Technology, 2022, 65(14), 92 (in Chinese).
张磊, 魏帅帅, 宋波, 等. 航空制造技术, 2022, 65(14), 92.
6 Alessandro S, Flaviana C, Manuela G, et al. Virtual and Physical Prototyping, 2018, 13(3), 191.
7 Braga D F O, Azevedo L, Cipriano G, et al. Procedia Structural Integrity, 2024, 54, 568.
8 Chen H, Wei Q S, Wen S F, et al. International Journal of Machine Tools and Manufacture, 2017, 123, 146.
9 Kovalev O B, Zaitsev A V, Novichenko D, et al. Journal of Thermal Spray Technology, 2011, 20(3), 465.
10 Markl M, Koerner C. Annual Review of Materials Research, 2016, 46, 93.
11 Song Y X, Shu L S, Zhang S, et al. Ceramics International, 2024, 50(15), 26607.
12 Shuja S, Yilbas B. Optics and Laser Technology, 2010, 43(4), 767.
13 Lee K H, Yun G J. Additive Manufacturing, 2020, 36(5), 101497.
14 Li E L, Wang L, Yu A B, et al. Powder Technology, 2021, 381(1), 298.
15 Tolochko N K, Mozzharov S E, Yadroitsev I A, et al. Rapid Prototyping Journal, 2004, 10(2), 78.
16 Yadroitsev I, Gusarov A, Yadroitsava I, et al. Journal of Materials Processing Technology, 2010, 210(12), 1624.
17 Wang L, Guo K, Cong J Q, et al. Laser & Optoelectronics Progress, 2023, 60(5), 0514007(in Chinese).
王磊, 郭铠, 丛佳琦, 等. 激光与光电子学进展, 2023, 60(5), 0514007.
18 Scharowsky T, Osmanlic F, Singer R F, et al. Applied Physics A, 2014, 114(4), 1303.
19 Guo L, Liu H, Huang Y, et al. International Journal of Machine Tools & Manufacture:Design, Research and Application, 2023, 184, 103977.
20 Mukherjee T, Wei H L, De A, et al. Computational Materials Science, 2018, 150, 304.
21 Tseng C C, Li C J. International Journal of Heat and Mass Transfer, 2019, 134, 906.
22 Shashank S, Vijay M, Ramakrishna S A, et al. Journal of Materials Processing Technology, 2018, 262, 131.
23 Ki H, Mohanty P S, Mazumder J. Numerical Heat Transfer Part B Fundamentals, 2005, 48(2), 125.
24 Ge W, Fuh J, Na S. Journal of Manufacturing Processes, 2021, 62, 646.
25 Bayata M, Thankib A, Mohantya S, et al. Additive Manufacturing, 2019, 30, 100835.
26 Hu Z, Zhao Z, Deng X, et al. Materials Chemistry and Physics, 2022, 283, 125996.
27 Mandal V, Tripathi P, Sharma S, et al. Ceramics International, 2023, 49, 14408.
28 He P, Kong H, Liu Q, et al. Materials Science & Engineering A, 2021, 811, 141025.
29 Chouhan A, Hesselmann M, Toenjes A, et al. Additive Manufacturing, 2022, 59, 103179.
30 Zhang M, Wang C, Mi G, et al. Materials Characterization, 2024, 207, 113561.
[1] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[2] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[3] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[4] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[5] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[6] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[7] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[8] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[9] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[10] 宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
[11] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[12] 王 朋, 张 迪, 张 凰, Ghosh Saikat. 天然有机质对纳米碳管环境行为的影响研究进展[J]. 材料导报, 2017, 31(1): 131-135.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed