Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24010194-7    https://doi.org/10.11896/cldb.24010194
  无机非金属及其复合材料 |
羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响
陈永达1, 胡智淇2, 关岩3,4,*, 常钧2, 陈兵4,5
1 辽宁科技大学土木工程学院,辽宁 鞍山 114051
2 大连理工大学建设工程学部,辽宁 大连 116024
3 辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
4 辽宁省镁资源与镁质材料专业创新中心,辽宁 鞍山 114051
5 上海交通大学船舶海洋与建设工程学院,上海 200240
The Effect of Hydroxypropyl Methylcellulose and Silane Coupling Agent on the Performance of Magnesium Phosphate Based Fireproof Coatings for Steel Structures
CHEN Yongda1, HU Zhiqi2, GUAN Yan3,4,*, CHANG Jun2, CHEN Bing4,5
1 School of Civil Enginerering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
2 Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
3 School of Material and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
4 Liaoning Provincial Magnesium Materials and Magnesium Resources Engineering Research Center, Anshan 114051, Liaoning, China
5 School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 8808KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用羟丙基甲基纤维素(HPMC)与硅烷偶联剂(SCA)两种外加剂对新型磷酸镁(MPC)基钢结构防火涂料进行改性,研究了两种外加剂的掺入对涂料的力学性能、热防护性能等宏观指标的影响规律。分析外加剂对涂料水化的进程与水化产物的影响机理,并通过电化学分析手段探讨外加剂对涂料耐盐腐蚀性能的影响。结果表明,HPMC的掺入能降低涂料的干密度与导热率,提高涂料的防火性能,SCA的掺入则对这几项指标和性能的影响较小。两种外加剂的掺入会对涂料的抗压力学性能产生负面影响,但可以提高涂料与钢板间的黏结能力。微观测试结果表明,两种外加剂的掺入未影响涂料的物相成分,电化学测试结果表明,两种外加剂的掺入均可以提高涂料的耐盐腐蚀能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈永达
胡智淇
关岩
常钧
陈兵
关键词:  外加剂  水化  涂料  防火性能  力学性能  耐盐腐蚀    
Abstract: A new magnesium phosphate (MPC) based steel structure fireproof coating was modified using two additives, hydroxypropyl methylcellulose (HPMC) and silane coupling agent (SCA), and the influence of these two additives on the macroscopic indicators such as mechanical properties and thermal protection performance of the coating was studied. Analyze the influence mechanism of additives on the hydration process and hydration products of coatings, and explored the effect of additives on the salt corrosion resistance of coatings through electrochemical analysis methods. The results indicate that the addition of HPMC can reduce the dry density and thermal conductivity of coatings, improve the fire resistance of coatings, while SCA has a relatively small impact on these. The addition of two additives will have a negative impact on the compressive mechanical properties of the coating, but on the other hand, it can improve the bonding ability between the coating and the steel plate. The microscopic test results show that the addition of the two additives does not change the phase composition of the coating. The electrochemical test results show that both additives can improve the salt corrosion resistance of the coating.
Key words:  admixture    hydration    coating    mechanical property    fire performance    salt corrosion resistance
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TQ172  
基金资助: 国家重点研发计划(2022YFC3803100)
通讯作者:  关岩,辽宁科技大学材料与冶金学院副教授、硕士研究生导师。目前主要从事路面快速修补材料的研发与应用、镁质胶凝材料微观结构与水化机理、低品位菱镁矿高值高效制备绿色镁建材技术等方面的研究工作。15841293909@163.com   
作者简介:  陈永达,现为辽宁科技大学土木工程学院硕士研究生,目前主要研究领域为镁质胶凝材料。
引用本文:    
陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
CHEN Yongda, HU Zhiqi, GUAN Yan, CHANG Jun, CHEN Bing. The Effect of Hydroxypropyl Methylcellulose and Silane Coupling Agent on the Performance of Magnesium Phosphate Based Fireproof Coatings for Steel Structures. Materials Reports, 2025, 39(8): 24010194-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010194  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24010194
1 Zhang S Y, Jing L, Deng L. Hot Working Technology, 2021, 50(18), 15(in Chinese).
张晟源, 金静, 邓亮. 热加工工艺, 2021, 50(18), 15.
2 Hou B R, Lu D Z. Journal of the Chinese Academy of Sciences, 2018, 33(6), 601(in Chinese).
侯保荣, 路东柱. 中国科学院院刊, 2018, 33(6), 601.
3 Liu Z Y. New Building Materials, 2000(1), 26 (in Chinese).
刘志勇. 新型建筑材料, 2000(1), 26.
4 Liu P F, Lan M Z, Ding B F, et al. New Building Materials, 2016(7), 49(in chinese).
刘鹏飞, 兰明章, 项斌峰, 等. 新型建筑材料, 2016(7), 49.
5 Jian S W, Ma B G, Su L, et al. Bulletin of the Chinese Ceramic Society, 2011, 30(3), 4560(in Chinese).
蹇守卫, 马保国, 苏雷, 等. 硅酸盐通报, 2011, 30(3), 4560.
6 Xin Z, Chemistry of synthetic material additives, Chemical Industry Press, China, 2005, pp. 188(in Chinese).
辛忠, 合成材料添加剂化学, 化学工业出版社, 2005, pp.188.
7 Zhang X H. Synthesis and application of new silane coupling agents. Master's Thesis, Nanchang University, China, 2008. (in Chinese).
张旭华. 新型硅烷偶联剂的合成与应用. 硕士学位论文, 南昌大学, 2008.
8 Pantoja M, Daz-Benito B, Velasco F, et al. Applied Surface Science, 2009, 255. 6386.
9 De Graeve I, Vereecken J, Franquet A, et al. Progress in Organic Coa-tings, 2007, 57, 224.
10 Wang A J, Zhang J, Li J M, et al. Materials Science & Engineering C, 2013, 33(5), 2508.
11 You C, Qian J, Qin J, et al. Cement and Concrete Research, 2015, 78, 179.
12 Kumar R K, Achutha P K. Construction and Building Materials, 2015, 91, 126.
13 Lai Z Y, Qian J S, Lu Z Y, et al. Journal of Functional Materials, 2012, 43(15), 2065(in Chinese).
赖振宇, 钱觉时, 卢忠远, 等. 功能材料, 2012, 43(15), 2065.
14 Shen R X, Chui Q, Li Q H. New fiber-reinforced cement-matrix composite material, China Building Materials Industry Press, China, 2004, pp. 104(in Chinese).
沈荣熹, 崔琪, 李清海. 新型纤维增强水泥基复合材料, 中国建材工业出版社, 2004, pp. 104.
15 Soudée E, Péra J. Cement and Concrete Research, 2000, 30(2), 315.
16 Abdelrazig B E L, Sharp J H, El-Jazairi B. Cement and Concrete Research, 1989, 19(2), 247.
17 Zhang X L, Tang H D, Liao J. Silane coupling agent: principle, synthesis, and application, Chemical Industry Press, China, 2012, pp.78(in Chinese).
张先亮, 唐红定, 廖俊. 硅烷偶联剂:原理、合成与应用, 化学工业出版社, 2012, pp.78.
18 Lai D W, Yang J, Tan M J, et al. Packaging Journal, 2010, 2(2), 18(in Chinese).
赖登旺, 杨军, 谭美军, 等. 包装学报, 2010, 2(2), 18.
19 Chen S, Chen R S, Chen X Q, et al. Corrosion and Protection, 2008, (4), 175. (in Chinese).
陈珊, 陈仁霖, 陈学群, 等. 腐蚀与防护, 2008, (4), 175.
20 Xie Y D, Lin X J, Ai H H, et al. ACI Materials Journal, DOI: 10. 14359/51724599.
21 Zhao M Q, Lei A L, Corrosion and protection of metals, National Defence Industry Press, China, 2002, pp. 98 (in Chinese).
赵麦群, 雷阿丽. 金属的腐蚀与防护, 国防工业出版社, 2002, pp. 98.
22 Chico B, Galván J C, Fuente D D L, et al. Progress in Organic Coa-tings, 2007, 60(1), 45.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[3] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[4] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[5] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[6] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[7] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[8] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[9] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[10] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[11] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[12] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[13] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[14] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[15] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed