Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24010253-7    https://doi.org/10.11896/cldb.24010253
  无机非金属及其复合材料 |
纳米氢氧化镧磷吸附剂的制备及水体除磷研究
赵岚1,2, 韩颖超1,3,*
1 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
2 武汉理工大学材料科学与工程学院,武汉 430070
3 武汉理工大学湖北省生物材料工程技术研究中心,武汉 430070
Preparation of Nano Lanthanum Phosphorus Hydroxide Adsorbent with Application to Phosphorus Removal from Water
ZHAO Lan1,2, HAN Yingchao1,3,*
1 State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3 Biomedical Materials and Engineering Research Center of Hubei, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 22507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吸附剂除磷是水体除磷的常用方式,镧基磷结合剂与其他磷吸附剂相比具有磷亲和性强、pH适用范围广、环境友好等优势。镧基磷结合剂中,氢氧化镧含镧量高,具有更大的除磷潜力。本研究采用沉淀法制备了纳米氢氧化镧用于水体除磷,通过正交设计得到材料最佳的制备条件为反应温度80 ℃、氯化镧溶液浓度0.12 mol·L-1、反应时长1 h。使用透射电镜观察到制备的纳米氢氧化镧为长约65 nm、直径为5.8 nm的纳米棒。实验表明,纳米氢氧化镧可在较宽的pH范围(1~7)内有效吸附溶液中的磷,并且升高温度有利于磷吸附过程,在310 K、pH=3条件下纳米氢氧化镧的磷吸附容量可达131.11 mg·g-1。纳米氢氧化镧磷吸附过程符合准二级动力学模型和Freundlich等温方程。X射线衍射、傅里叶红外光谱和X射线光电子能谱研究表明,纳米氢氧化镧除磷机制包括溶解沉淀、静电吸附以及磷酸盐与纳米氢氧化镧中的OH-发生配体交换,最终形成稳定的内球配合物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵岚
韩颖超
关键词:  纳米氢氧化镧  磷吸附剂  水体除磷    
Abstract: Phosphorus removal by phosphorus adsorbent is a common way to remove phosphorus from water. Compared with other phosphorus adsorbents, lanthanum-based phosphorus binders have the advantages of strong phosphorus affinity, wide pH adaptability, and environmental friendliness. Among the lanthanum-based phosphorus binders, lanthanum hydroxide has high lanthanum content, and hence, greater phospho-rus removal potential. In this study, nano-lanthanum hydroxide was prepared by precipitation method for phosphorus removal in water. Through orthogonal test, the optimum preparation conditions were obtained as 1-hour reaction at 80 ℃ and a LaCl3 solution of 0.12 mol·L-1. It was observed by transmission electron microscopy that the prepared nano-lanthanum hydroxide was nanorods with lengths of about 65 nm and diameters of 5.8 nm. The experimental results showed that nano-lanthanum hydroxide could effectively adsorb phosphorus in solution in a wide pH range (1—7), and the temperature rise was conducive to the phosphorus adsorption process. At 310 K and pH=3, the phosphorus adsorption capacity of nano-lanthanum hydroxide could reach 131.11 mg·g-1. The phosphorus adsorption process of nano-lanthanum hydroxide conforms to the pseudo-second-order kinetic model and Freundlich isothermal equation. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) showed that the mechanism of nano-lanthanum hydroxide phosphorus removal included dissolution precipitation, electrostatic adsorption and ligand exchange between phosphate and OH- in nano-lanthanum hydroxide to form stable inner sphere complexes.
Key words:  nano-lanthanum hydroxide    phosphorus adsorbent    phosphorus removal in water
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  X52  
基金资助: 湖北省国际科技合作项目(2023EHA056)
通讯作者:  韩颖超,武汉理工大学材料复合新技术国家重点实验室研究员、博士研究生导师,主要从事纳米生物医药材料的研究。hanyingchao@whut.edu.cn   
作者简介:  赵岚,武汉理工大学材料科学与工程学院硕士研究生,在韩颖超教授的指导下进行研究,主要研究领域为镧基磷吸附剂。
引用本文:    
赵岚, 韩颖超. 纳米氢氧化镧磷吸附剂的制备及水体除磷研究[J]. 材料导报, 2025, 39(8): 24010253-7.
ZHAO Lan, HAN Yingchao. Preparation of Nano Lanthanum Phosphorus Hydroxide Adsorbent with Application to Phosphorus Removal from Water. Materials Reports, 2025, 39(8): 24010253-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010253  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24010253
1 Zou F F, Jia Z P, Yang D N, et al. Journal of Comparative Chemistry, 2020, 4(4), 35(in Chinese).
邹芳芳, 贾作平, 杨道能, 等. 比较化学, 2020, 4(4), 35.
2 Parasana N, Shan M, Unnarkat A. Environmental Science and Pollution Research, 2022, 29(26), 38985.
3 Zheng Y, Wan Y, Zhang Y, et al. Critical Reviews in Environmental Science and Technology, 2022, 53(11), 1148.
4 Zakaria K A, Yatim N I, Ali N A, et al. Environmental Science and Pollution Research, 2022, 29(31), 46471.
5 Siciliano A, Limonti C, Curcio G M, et al. Sustainability, 2020, 12(18), 7538.
6 Cheng H, Qin H, Liang L, et al. Bioresource Technology, 2023, 381, 129117.
7 Yang Y, Shi X, Ballent W, et al. Water Environment Research, 2017, 89(12), 2122.
8 Du M, Zhang Y, Wang Z, et al. Chemical Engineering Journal, 2022, 442, 136147.
9 Weng H, Yang Y, Zhang C, et al. Chemical Engineering Journal, 2023, 453, 139812.
10 Yu X, Tang Y, Pan J, et al. Water Environment Research, 2020, 92(10), 1751.
11 Wang Y, Kuntke P, Saakes M, et al. Water Research, 2022, 209, 1512.
12 Göde J N, Hoefling Souza D, Trevisan V, et al. Journal of Environmental Chemical Engineering, 2019, 7(5), 103352.
13 Cheng Y. Rare earth based composite used foe phosphate removal from waste water. Master's Thesis, University of Science and Technology of China, China, 2021(in Chinese).
程艺. 稀土基复合材料用于水体除磷研究. 硕士学位论文, 中国科学技术大学, 2021.
14 Zhang P, He M, Huo S, et al. Chemical Engineering Journal, 2022, 446, 137081.
15 Zhang L, Wan L, Chang N, et al. Journal of Hazardous Materials, 2011, 190(1-3), 848.
16 Liu X, Zong E, Hu W, et al. ACS Sustainable Chemistry & Engineering, 2018, 7(1), 758.
17 Wang X, Wu L, Huang Y, et al. Journal of Water Process Engineering, 2022, 47, 102722.
18 Gao D, Ji H, Li R, et al. Chemical Engineering Journal, 2023, 475, 145949.
19 Fang X, Zhang D, Chang Z, et al. Environmental Research, 2024, 243, 117816.
20 Makita Y, Sonoda A, Sugiura Y, et al. Separation and Purification Technology, 2020, 241, 116707.
21 Tee K A, Badsha M A H, Khan M, et al. Process Safety and Environmental Protection, Part B, 2022, 159, 008.
22 Li S, Huang X, Liu J, et al. Journal of Hazardous Materials, 2020, 384, 121457.
23 Ma Z, Yu T, Wu Y, et al. Biomedicine & Pharmacotherapy, 2019, 111, 909.
24 Nie Y H, Yang Q S, Ma Y, et al. Hydrometallurgy of China, 2016, 35(1), 1(in Chinese).
聂云华, 杨启山, 马莹, 等. 湿法冶金, 2016, 35(1), 1.
25 Li Y L, Liu Y X, Liu M, et al. Materials Reports, 2024, 38(14), 22100069(in Chinese).
李运龙, 刘忆贤, 刘苗, 等. 材料导报, 2024, 38(14), 22100069.
26 He S Q, Zhou Y Y, Lin J W, et al. Environmental Chemistry, 2018, 37(11), 2565(in Chinese).
何思琪, 周亚义, 林建伟, 等. 环境化学, 2018, 37(11), 2565.
27 Wang W T, Chen X L, Yang B Q. University Chemistry, 2021, 36(2), 233(in Chinese).
王伟涛, 陈香李, 杨百勤. 大学化学, 2021, 36(2), 233.
28 Shi W, Fu Y, Jiang W, et al. Chemical Engineering Journal, 2019, 357, 33.
29 Wang Z, Shen D, Shen F, et al. Chemosphere, 2016, 150, 1.
30 Li R, Wang J J, Zhou B, et al. Science of the Total Environment, 2016, 559, 121.
31 He Y, Lin H, Dong Y, et al. Applied Surface Science, 2017, 426, 995.
32 Tang Q, Shi C, Shi W, et al. Science of the Total Environment, 2019, 662, 511.
[1] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[2] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[3] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[4] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[5] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[6] 彭惠靖, 张卫民, 王玉罡, 卢琪愿, 王新宇. 复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理[J]. 材料导报, 2024, 38(16): 23020165-8.
[7] 李运龙, 刘忆贤, 刘苗, 韩继龙, 周理龙, 李正杰, 甄崇礼, 刘润静. 基于静电和金属络合协同作用的MIL-101(Cr)-NH2高效吸附水中单宁酸[J]. 材料导报, 2024, 38(14): 22100069-8.
[8] 黄霄伊, 代朝猛, 游学极, 李思, 童汪凯, 李继香. 地下水低渗透区重非水相液体(DNAPL)的增渗增移技术综述[J]. 材料导报, 2024, 38(6): 22120129-8.
[9] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[10] 余义昌, 彭枫, 姜德彬, 李凯霖, 陈婷婷, 马腾飞, 封丽. 酸-镁改性蒙脱土的制备及对磷酸盐吸附性能的研究[J]. 材料导报, 2023, 37(24): 22110326-7.
[11] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[12] 裴烈飞, 张香云, 袁子洲. 非晶态合金在废水处理中的催化性能[J]. 材料导报, 2022, 36(2): 20080033-9.
[13] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[14] 孔志云, 樊龙伟, 杜亚杰, 牛昌昌, 狄然, 张环, 魏俊富. 金属表面离子印迹材料的研究进展[J]. 材料导报, 2021, 35(15): 15143-15152.
[15] 代朝猛, 李彦, 段艳平, 刘曙光, 涂耀仁. 开关表面活性剂调控及增溶机理研究进展[J]. 材料导报, 2021, 35(9): 9218-9222.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed