Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 22100069-8    https://doi.org/10.11896/cldb.22100069
  高分子与聚合物基复合材料 |
基于静电和金属络合协同作用的MIL-101(Cr)-NH2高效吸附水中单宁酸
李运龙1, 刘忆贤1, 刘苗1, 韩继龙1, 周理龙1, 李正杰1,*, 甄崇礼1,2, 刘润静1
1 河北科技大学化学与制药工程学院,石家庄 050018
2 创启时代(青岛)科技有限公司,山东 青岛 266041
Efficiently Remove Tannic Acid from Aqueous Solution by MIL-101(Cr)-NH2 Based on the Synergistic Effect of Electrostatic and Complexation Interaction
LI Yunlong1, LIU Yixian1, LIU Miao1, HAN Jilong1, ZHOU Lilong1, LI Zhengjie1,*, YUN Jimmy1,2, LIU Runjing1
1 School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
2 Chuangqi Times (Qingdao) Technology Co., Ltd., Qingdao 266041, Shandong, China
下载:  全 文 ( PDF ) ( 7064KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过水热法制备了一种氨基改性的MIL-101(Cr),采用静态吸附法研究了MIL-101(Cr)-NH2对废水中单宁酸的吸附性能。采用X射线衍射仪(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和氮气吸附法表征了材料的结构和形貌,研究了pH值、吸附时间、初始浓度及离子强度对其单宁酸吸附性能的影响,探究了其对单宁酸的吸附机理。随着溶液pH增大,MIL-101(Cr)-NH2对单宁酸的吸附量逐渐升高,最佳pH为7.0。MIL-101(Cr)-NH2对单宁酸的吸附过程符合拟二级动力学模型、Freundlich模型和Temkin模型,说明吸附过程为多层化学吸附。扩散模型拟合结果表明,膜扩散和粒子内扩散同时控制吸附过程。在T=303 K、pH=7时,MIL-101(Cr)-NH2饱和吸附量高达2 031 mg/g。通过Zeta电位和FTIR等表征分析发现,单宁酸主要靠静电作用和金属络合作用被吸附在MIL-101(Cr)-NH2上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李运龙
刘忆贤
刘苗
韩继龙
周理龙
李正杰
甄崇礼
刘润静
关键词:  MIL-101(Cr)-NH2  吸附  单宁酸  静电作用  络合作用    
Abstract: An amino-functionalized MIL-101(Cr) (namely MIL-101(Cr)-NH2) was prepared by hydrothermal method and its adsorption performance of tannic acid in aqueous solution was investigated by batch experiments. The structure and morphology of MIL-101(Cr)-NH2 were characterized through powder X-ray diffraction instrument (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption isotherms. The effects of initial pH, adsorption time, initial concentration and ion strength on the adsorption performance of tannic acid were explored and the adsorption mechanism was studied. The adsorption capacity of tannic acid onto MIL-101(Cr)-NH2 gradually increased with the increasing pH value and the optimal pH value was 7.0. The pseudo-second-order kinetic model, Freundlich model, and Temkin model fitted the adsorption data well, which indicated that tannic acid was adsorbed onto MIL-101(Cr)-NH2 by multilayer adsorption and the adsorption process was dominated by chemisorption. The fitting results of diffusion models suggested that film diffusion and intra-particle diffusion affected the adsorption process together. At T=303 K and pH=7, the equilibrium adsorption capacity of MIL-101(Cr)-NH2 was up to 2 031 mg/g. The main mechanism controlling the adsorption of tannic acid onto MIL-101(Cr)-NH2 are the electrostatic interaction and Cr-O complexation interaction.
Key words:  MIL-101(Cr)-NH2    adsorption    tannic acid    electrostatic interaction    complexation interaction
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  X52  
  TQ46  
基金资助: 河北省自然科学基金(B2020208095);河北省高等学校科学技术研究项目(QN2022142);青海省海西州科技局企业创新项目(2019-104)
通讯作者:  * 李正杰,河北科技大学化学与制药工程学院讲师、硕士研究生导师。2011年北京化工大学化学工程与工艺专业本科毕业,2016年北京化工大学化学工程与技术专业博士毕业。目前主要从事多孔材料的设计、制备及在气液相中吸附分离性能研究。lizj@hebust.edu.cn   
作者简介:  李运龙,2020年6月毕业于平顶山学院化学与环境工程学院,获得工学学士学位。目前为河北科技大学化学与制药工程学院硕士研究生,在李正杰老师的指导下进行研究。目前主要研究领域为双金属-有机骨架材料的制备及性能。
引用本文:    
李运龙, 刘忆贤, 刘苗, 韩继龙, 周理龙, 李正杰, 甄崇礼, 刘润静. 基于静电和金属络合协同作用的MIL-101(Cr)-NH2高效吸附水中单宁酸[J]. 材料导报, 2024, 38(14): 22100069-8.
LI Yunlong, LIU Yixian, LIU Miao, HAN Jilong, ZHOU Lilong, LI Zhengjie, YUN Jimmy, LIU Runjing. Efficiently Remove Tannic Acid from Aqueous Solution by MIL-101(Cr)-NH2 Based on the Synergistic Effect of Electrostatic and Complexation Interaction. Materials Reports, 2024, 38(14): 22100069-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100069  或          http://www.mater-rep.com/CN/Y2024/V38/I14/22100069
1 Pan F, Li A M, Shuang C D, et al. Technology of Water Treatment, 2012, 38(5), 7 (in Chinese).
潘菲, 李爱民, 双陈冬, 等. 水处理技术,2012, 38(5), 7.
2 Agarwal S, Rajoria P, Rani A. Journal of Environmental Chemical Engineering, 2018, 6, 1486.
3 Zhang C S, Zhang K F, Chi J. Chinese Journal of Environmental Engineering, 2004(6), 36 (in Chinese).
张朝升, 张可方, 迟军. 环境污染治理技术与设备, 2004(6), 36.
4 Lu Y, Liang J K, Wang H Y, et al. Journal of Hazardous Materials, 2022, 425, 127827.
5 Pei L Y, Zhu H X, Hou Y P, et al. Journal of Shaanxi University of Science & Technology, 2021, 39 (5), 14 (in Chinese).
裴立影, 朱红霞, 侯银萍, 等. 陕西科技大学学报, 2021, 39 (5), 14.
6 Fei P, Zhao S J, Chen X, et al. Food & Machinery, 2019, 35(7), 226 (in Chinese).
费鹏, 赵胜娟, 陈曦, 等. 食品与机械, 2019, 35(7), 226.
7 Wei W, Li J S, Han X, et al. Science of the Total Environment, 2021, 778, 146189.
8 Cañizares P, Pérez Á, Camarillo R, et al. Desalination, 2006, 200, 310.
9 Mansouri K, Elsaid K, Bedoui A, et al. Chemical Engineering Journal, 2011, 172, 970.
10 Zhou Y A, Xing X H, Liu Z H, et al. Chemosphere, 2008, 72, 290.
11 Sarıcı-Özdemir Ç, Önal Y. Desalination, 2010, 251, 146.
12 Xue Z H, Li Y, Mi Q, et al. New Chemical Materials, 2016, 44(4), 179 (in Chinese).
薛泽慧, 李裕, 米琴, 等. 化工新型材料, 2016, 44(4), 179.
13 Wang J H, Liu S C. Journal of Shaanxi University of Science & Technology, 2015, 33(1), 25 (in Chinese).
王家宏, 刘少冲. 陕西科技大学学报, 2015, 33(1), 25.
14 Wang J H, Zheng S R, Liu J L, et al. Chemical Engineering Journal, 2010, 165, 10.
15 Zhou Y, Wang J N, Xu L, et al. Ion Exchange and Adsorption, 2010, 26(3), 202 (in Chinese).
周扬, 王津南, 许丽, 等. 离子交换与吸附, 2010, 26(3), 202.
16 Kumar R, Barakat M A, Soliman E M. Journal of Industrial and Engineering Chemistry, 2014, 20(5), 2992.
17 Sun Y, Diao B X. Water Purification Technology, 2012, 31(4), 109 (in Chinese).
孙瑛, 刁炳祥. 净水技术, 2012, 31(4), 109.
18 Yaghi O M, O'Keeffe M, Ockwig N W, et al. Nature, 2003, 423(6941), 705.
19 Zhao X D, Zheng M Q, Gao X L, et al. Coordination Chemistry Reviews, 2021,440, 213970.
20 Zhao Y J, Zhao H F, Wang T, et al. Chemical Industry and Engineering Progress, 2020, 39(6), 2187 (in Chinese).
赵英杰, 赵慧芳, 王婷, 等. 化工进展, 2020, 39(6), 2187.
21 Dhaka S, Kumar R, Deep A, et al. Coordination Chemistry Reviews, 2019, 380, 330.
22 Guo X Y , Kang C F, Huang H L, et al. Microporous and Mesoporous Materials, 2019, 286, 84.
23 Gao X L, Zheng M Q, Zhao X D, et al. Journal of Chemical Engineering Data, 2020, 66(1), 669.
24 Wang X, Meng L Y, Dai Y, et al. Acta Scientiae Circumstantiae, 2013, 33(8), 2193 (in Chinese).
王雪, 孟令友, 代莹, 等. 环境科学学报, 2013, 33(8), 2193.
25 Wu D, Jiang J L, Xu Y, et al. Journal of Huaiyin Institute of Technology, 2014, 23(1), 5 (in Chinese).
吴典, 蒋金龙, 许莹, 等. 淮阴工学院学报, 2014, 23(1), 5.
26 Lin Y C, Kong C L, Chen L. RSC Advances, 2012, 2(16), 6417.
27 Côté A P, Benin A I, Ockwig N W, et al. Science, 2005, 310(5751), 1166.
28 Han G, Qian Q H, Rodriguez K M, et al. Industrial & Engineering Chemistry Research, 2020, 59(16), 7888.
29 Dapaah M F, Liu B, Cheng L. Journal of Environmental Chemical Engineering, 2021, 9(4), 105275.
30 Wahyono T, Astuti D A, Wiryawan I K G, et al. IOP Conference Series: Materials Science and Engineering, 2019, 546(4), 042045.
31 Yu N J, Wang H L, Zhu Z L, et al. Chinese Journal of Environmental Engineering, 2015, 9(10), 4753 (in Chinese).
于年吉, 王海玲, 朱兆连, 等. 环境工程学报,2015, 9(10), 4753.
32 Liu J R, Wei Y, Chang M, et al. AIChE Journal, 2022, 68(2), e17522.
33 Yue L, Zhang Y, Zhang W L, et al. Chinese Journal of Environmental Engineering, 2019, 13(11), 2553 (in Chinese).
岳琳, 张迎, 张文丽, 等. 环境工程学报, 2019, 13(11), 2553.
34 Elaiwi F A, Sirkecioglu A. Separation Science and Technology, 2020, 55(18), 3362.
35 Yu F, Li Y, Huang G Q, et al. Chemosphere, 2020, 260, 127650.
36 Xu M M, Bao W Q, Xu S P, et al.BioResources, 2016, 11(1), 8.
37 Wu C C, Xiao Y, Wu C, et al. Industrial Water Treatment, 2020, 40(2), 63 (in Chinese).
吴成晨, 肖瑜, 吴川, 等. 工业水处理, 2020, 40(2), 63.
38 Jiang B H, Lin J W, Zhan Y H, et al. Environmental Science, 2017, 38(6), 2400 (in Chinese).
姜博汇, 林建伟, 詹艳慧, 等. 环境科学, 2017, 38(6), 2400.
39 Yang X M, Wang W, Xie Q D. The Chinese Journal of Process Enginee-ring, 2022, 22(11), 1512 (in Chinese).
杨秀敏, 王文, 谢琼丹. 过程工程学报, 2022, 22(11), 1512.
40 Zhang Y X, Ruan Q Q, Peng Y G, et al. Journal of Colloid and Interface Science, 2018, 525, 39.
41 Wang J H, Zheng C L, Ding S L, et al. Desalination, 2011, 273(2-3), 285.
42 Huang J H, Song Z H, Jin Q Z, et al. Science and Technology of Food Industry, 2010, 31(12), 255 (in Chinese).
黄健花, 宋志华, 金清哲, 等. 食品工业技术, 2010, 31(12), 255.
43 Wang J N, Zhou Y, Li A M, et al. Acta Polymerica Sinica, 2010(1), 96 (in Chinese).
王津南, 周扬, 李爱民, 等. 高分子学报, 2010(1), 96.
44 Wu J, Chen J. Journal of Applied Polymer Science, 2013, 127(3), 1765.
45 He Z Q, Cheng Z Q, Kang L J, et al. Food Science, 2015, 36(1), 104 (in Chinese).
何中秋, 程志强, 康立娟, 等. 食品科学, 2015, 36(1), 104.
46 Lee Y C, Lee D J, Cheng C C. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 124.
47 Sun C C, Xiong B W, Pan Y, et al. Journal of Colloid and Interface Science, 2017, 487, 175.
48 Wang J N, Li A M, Xu L, et al. Chemical Journal of Chinese Universities, 2009, 30(5), 1046 (in Chinese).
王津南, 李爱民, 许丽, 等. 高等学校化学学报, 2009, 30(5), 1046.
49 Li Z Y. Chemical treatment of minerals, Metallurgical Industry Press, China, 2015 (in Chinese).
李正要. 矿物化学处理, 冶金工业出版社, 2015.
50 Li Z J, Ma M Y, Zhang S S, et al. Journal of Porous Materials, 2019, 27(1), 189.
51 Jin T, Yang Q, Meng C, et al. RSC Advances, 2014, 4(79), 41902.
[1] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[2] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[3] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[4] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[5] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[6] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[7] 高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
[8] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[9] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[10] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[11] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[12] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[13] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[14] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[15] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed