Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24010159-8    https://doi.org/10.11896/cldb.24010159
  无机非金属及其复合材料 |
基于分子动力学的沥青-集料界面动态黏附及失效特性研究
孟小丽1, 李晓艳1,*, 闫怡红2, 李文博1,2
1 新疆农业职业技术大学农业工程学院,新疆 昌吉 831100
2 长沙理工大学交通学院,长沙 410114
Research on Dynamic Adhesion and Failure Characteristics of Asphalt-Aggregate Interface Based on Molecular Dynamics
MENG Xiaoli1, LI Xiaoyan1,*, YAN Yihong2, LI Wenbo1,2
1 College of Agricultural Engineering, Xinjiang Agricultural Vocational and Technical University, Changji 831100, Xinjiang, China
2 School of Transportation, Changsha University of Science & Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 20346KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青和集料之间的界面特性直接决定沥青混合料的性能。为评估沥青和集料在原子尺度上的界面黏附及失效行为,选择基质沥青与SBS改性沥青分别与两种矿物集料成分建立分子模型,并进行了分子动力学(MD)模拟。结果显示,基质沥青与CaO的界面黏附能是基质沥青与SiO2的3.5倍,SBS改性沥青与CaO的界面黏附能是SBS改性沥青与SiO2的3.6倍,从分子尺度验证了沥青与碱性集料的黏附性能明显优于酸性集料。相比SBS改性剂,矿物集料类型对沥青-集料黏附性能的影响更为显著。此外,SBS改性剂是通过改变集料界面的饱和分、芳香分、胶质和沥青质的相对浓度来影响集料界面的黏附强度。在所有四种沥青组分中,沥青质对沥青在矿物表面的附着力贡献最大。通过MD模拟得到的拉伸下界面应力分离曲线与在宏观尺度上进行的拉拔强度测量得出的破坏行为相似。结果表明,界面破坏过程受到沥青化学成分的影响。MD模拟的结果提供了在原子尺度上对材料失效的基本认识,而这种认识在沥青材料的正常实验测试环境中是无法观察到的。另外,MD模拟结果有可能被校准并用作更高尺度微观力学模型的输入,以预测沥青混合料的整体力学响应。该工作从原子尺度上对沥青黏结剂在矿质集料表面的黏附及失效提供了一个基本的认识。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟小丽
李晓艳
闫怡红
李文博
关键词:  道路工程  分子动力学模拟  沥青-集料界面  沥青  黏附功  相对浓度    
Abstract: The interface between asphalt and aggregate directly determines the performance of asphalt mixture. In order to evaluate the interfacial adhesion and failure behavior of asphalt and aggregate at atomic scale, thebase asphalt and SBS modified asphalt were selected to establish molecular models with two kinds of mineral aggregate components, and the molecular dynamics simulation was carried out. The results show that the interfacial adhesion energy between base asphalt and CaO is 3.5 times that between base asphalt and SiO2, and the interfacial adhesion energy between SBS modified asphalt and CaO is 3.6 times that between SBS modified asphalt and SiO2. From the molecular scale, the adhesion property between asphalt and alkaline aggregate is obviously better than that of acid aggregate. Compared with SBS modifier, mineral aggregate type has a more significant effect on the adhesion properties of bitumen aggregate. In addition, the SBS modifier influences the adhesion strength at the aggregate interface by altering the relative concentrations of saturates, aromatics, resins, and asphaltenes on the aggregate surface. Among all the four asphalt components, bitumen contributes the most to the adhesion of bitumen to mineral surfaces. The interfacial stress separation curves obtained by MD simulation are similar to the failure behaviors obtained by drawing strength measurements on a macroscopic scale. The results show that the interface failure process is affected by the chemical composition of asphalt. The results of the MD simulation provide a fundamental understanding of material failure at the atomic scale that is not observable in the normal experimental test environment of asphalt materials. In addition, MD simulation results have the potential to be calibrated and used as an input to higher-scale micromechanical models to predict the overall mechanical response of asphalt mixtures. This work provides a basic understanding of the adhesion and failure of asphalt binders on the surface of mineral aggregates from the atomic scale.
Key words:  road engineering    molecular dynamics simulation    asphalt-aggregate interface    asphalt    adhesion work    relative concentration
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  U414  
基金资助: 新疆维吾尔自治区自然科学基金(2021D01B70)
通讯作者:  李晓艳,硕士,新疆农业职业技术大学讲师,主要研究领域为道路工程材料、绿色建筑等。1667563431@qq.com   
作者简介:  孟小丽,硕士,新疆农业职业技术大学副教授,主要从事建筑结构设计与新型材料研发和绿色施工技术方面的研究。
引用本文:    
孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
MENG Xiaoli, LI Xiaoyan, YAN Yihong, LI Wenbo. Research on Dynamic Adhesion and Failure Characteristics of Asphalt-Aggregate Interface Based on Molecular Dynamics. Materials Reports, 2025, 39(8): 24010159-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010159  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24010159
1 Hu J, Liu P F, Huang Q B, et al. Construction and Building Materials, 2022, 319, 126113.
2 Wang H, Wang J, Chen J Q. Engineering Fracture Mechanics, 2014, 132, 104.
3 He L, Li G N, Zheng Y F, et al. Materials Reports, 2020, 34(19), 19083(in Chinese).
何亮, 李冠男, 郑雨丰, 等. 材料导报, 2020, 34(19), 19083.
4 Xiao R, Polaczyk P, Wang Y H, et al. Construction and Building Materials, 2022, 350, 128855.
5 Khasawneh M A, Al-Oqaily D M, Abu A H, et al. International Journal of Pavement Engineering, 2022, 23(9), 2889.
6 Sek Y T, Hamzah M O, Van D B. Construction and Building Materials, 2019, 227, 116642.
7 Ji X P, Sun E Y, Zou H W, et al. Construction and Building Materials, 2020, 249, 118693.
8 Sun Z L, Li S T, Zhang J H, et al. Construction and Building Materials, 2020, 261, 120006.
9 Ren S S, Liu X Y, Lin P, et al. Journal of Molecular Liquids, 2022, 366, 120363.
10 Sun G Q, Niu Z X, Zhang J P, et al. Case Studies in Construction Materials, 2022, 17, 01581.
11 Li Q, Wang J Q, Lu Y, et al. Construction and Building Materials, 2023, 382, 131296.
12 Xu J Y, Ma B, Mao W J, et al. Construction and Building Materials, 2023, 362, 129642.
13 Xie J, He W, Zhao X C, et al. Chemical Industry and Engineering Progress, 2023, 43(8), 4432(in Chinese).
谢娟, 贺文, 赵勖丞, 等. 化工进展, 2023, 43(8), 4432.
14 Pan L, Zhang J M, Lv Z T, et al. Journal of Building Materials, 2021, 24(5), 1054(in Chinese).
潘伶, 张晋铭, 吕志田, 等. 建筑材料学报, 2021, 24(5), 1054.
15 Zhang L Q, Greenfield M L. Energy and Fuels, 2008, 22(5), 3363.
16 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
17 Xu M, Yi J, Feng D, et al. ACS Applied Materials and Interfaces, 2016, 8(19), 12393.
18 Wu J Z, Fu W, Hu Y J, et al. Acta Petrolei Sinica, 2021, 37(5), 1106(in Chinese).
吴九柱, 付威, 胡艳娇, 等. 石油学报(石油加工), 2021, 37(5), 1106.
19 Yang J, Guo N S, Guo X Y, et al. Materials Reports, 2021, 35(S2), 138(in Chinese)
杨健, 郭乃胜, 郭晓阳, 等. 材料导报, 2021, 35(S2), 138.
20 Zhou W Y, Yi J Y, Chen Z, et al. Materials Reports, 2022, 36(16), 37(in Chinese).
周雯怡, 易军艳, 陈卓, 等. 材料导报, 2022, 36(16), 37.
21 Zhao S Q, Cong Z H, You Q L, et al. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9), 2437(in Chinese).
赵胜前, 丛卓红, 游庆龙, 等. 吉林大学学报(工学版), 2023, 53(9), 2437.
[1] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[2] 朱燕丽, 马川义, 张吉哲, 范秀泽, 何亮, 姚占勇. 沥青胶浆-集料界面水盐侵蚀损伤与多因素影响规律研究[J]. 材料导报, 2025, 39(6): 24010156-8.
[3] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[4] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[5] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[6] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[7] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[8] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[9] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[10] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[11] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[12] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[13] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[14] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[15] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[9] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[10] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed