Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 44-50    https://doi.org/10.11896/j.issn.1005-023X.2017.011.006
  材料综述 |
高熵合金氮化物薄膜的研究进展*
任波1,2, 赵瑞锋1,3, 刘忠侠3
1 河南工程学院机械工程学院,郑州 451191;
2 郑州大学材料科学与工程学院,郑州 450052;
3 郑州大学物理工程学院,材料物理教育部重点实验室,郑州450052
Advances in Nitride Films of High Entropy Alloy
REN Bo1,2, ZHAO Ruifeng1,3, LIU Zhongxia3
1 School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191;
2 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052;
3 Materials Physics Key Laboratory of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052
下载:  全 文 ( PDF ) ( 1518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于多元高熵合金思想制备的高熵合金氮化物薄膜由于多种元素相互混合,易于产生高熵效应、晶格畸变效应和缓慢扩散效应,使得该新型薄膜体系形成简单的非晶结构和纳米晶结构。依赖于成分和制备工艺,多元高熵合金氮化物薄膜表现出简单的固溶体结构和优异的性能,因而在许多领域极具应用潜力。综述了高熵合金氮化物薄膜的发展概况、组织特点、性能特征、制备方法和应用前景,并对高熵合金氮化物薄膜的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任波
赵瑞锋
刘忠侠
关键词:  多元高熵合金  氮化物薄膜  微观组织    
Abstract: Nitride films of high entropy alloys fabricated based on the idea of multi-principal-element high entropy alloy have been found to possess high entropy effect, lattice distortion effect, and sluggish diffusion effect due to multielemental mixtures. This makes the new film system usually have a simple nanocrystalline or amorphous structures. Depending upon the composition and/or processing route, the nitride films of multi-principal-element high entropy alloy exhibit simple solid solution structure and excellent properties, and they have potential application in many areas. In this article, the development, microstructure, properties, proces-sing route and promising application of nitride films of high entropy alloys are summarized, and its directions of future research are also discussed.
Key words:  multi-principal-element high entropy alloy    nitride film    microstructure
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG174.445  
基金资助: 中国博士后基金面上项目(2013M541986);河南工程学院博士基金(D2013013);河南省科技攻关计划项目(162102210286);河南省高等学校青年骨干教师培养计划(2016GGJS-154)
作者简介:  任波:男,1980年生,博士,副教授,主要从事高熵合金、高熵合金氮化物薄膜研究 E-mail:renbo193513@163.com
引用本文:    
任波, 赵瑞锋, 刘忠侠. 高熵合金氮化物薄膜的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 44-50.
REN Bo, ZHAO Ruifeng, LIU Zhongxia. Advances in Nitride Films of High Entropy Alloy. Materials Reports, 2017, 31(11): 44-50.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.006  或          https://www.mater-rep.com/CN/Y2017/V31/I11/44
1 Cantor B, Chang I T H, Knight P. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci Eng A, 2004, 375:213.
2 Yeh J W, Chen S K, Gan J Y, et al. Formation of simple crystal structure in solid-solution alloys with multi-principal metallic elements [J]. Metall Mater Trans A, 2004, 35:2533.
3 Yeh J W, Chen S K, Lin S J. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concept s and outcomes [J]. Adv Eng Mater, 2004, 6(5):299.
4 Ma D C, Yao M J, et al. Phase stability of non-equi-atomic CoCr-FeMnNi high entropy alloys [J]. Acta Mater, 2015, 98:288.
5 Zhang Y, Zhou Y J, et al. Solid-solution phase formation rules for multi-compoent alloys [J]. Adv Eng Mater, 2008, 10(6):534.
6 Li C, Li J C, Zhao M, et al. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys [J]. J Alloys Compd, 2009, 475:752.
7 Wang F J, Zhang Y. Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy [J]. Matr Sci Eng A, 2008, 496(1-2):214.
8 Dong Y, Gao X X, Lu Y P, et al. A multi-component AlCrFe2Ni2 alloy with excellent properties [J]. Mater Lett, 2016, 169:62.
9 Tsao L C, Chen C S, Chu C P. Age hardening reaction of the Al0.3-CrFe1.5MnNi0.5 high entropy alloy [J]. Mater Des, 2012, 36:854.
10 Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-entropy alloy design [J]. JOM, 2012, 64(7):839.
11 Zhang B, Gao M C, Zhang Y, et al. Senary refractory high entropy alloy MoNbTaTiVW [J]. Mater Sci Technol, 2015, 31(10):1207.
12 Lu Y P, Dong Y, et al. A promising new class of high-temperature alloys:Eutectic high-entropy alloys [J]. Sci Rep, 2014, 4:6200.
13 Gao M C, Zhang B, et al. Senary refractory high entropy alloy Hf-NbTaTiVZr [J]. Metall Mater Trans A, 2016, 47(7):3333.
14 Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf Coat Technol, 2004, 188-189:193.
15 Chen T K, Wong M S, Shun T T, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf Coat Technol, 2005, 200:1361.
16 Cheng C Y, Yeh J W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J]. Mater Lett, 2016, 185:456.
17 Chang Z C, Tsai D C, Chen E C. Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings [J]. Mater Sci Semicond Process, 2015, 39:30.
18 Tsau C H, Yang Y C, et al. The low electrical resistivity of the high-entropy alloy oxide thin films [J]. Procedia Eng, 2012, 36: 246.
19 Chang S Y, Lin S Y, Huang Y C. Microstructure and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings [J]. Thin Solid Films, 2011, 519(15):4865.
20 Tsai D C, Deng M J, Chang Z C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J]. J Alloys Compd, 2015, 647:179.
21 Dolique V, Thomann A L, Brault P, et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy [J]. Mater Chem Phys, 2009, 117:142.
22 Dolique V, Thomann A L, Brault P, et al. Thermal stability of AlCoCrCuFeNi high-entropy-alloy thin films studied by in-situ XRD analysis[J]. Surf Coat Technol, 2010, 204:1989.
23 Ren B, Liu Z X, Shi L, et al. Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering [J]. Appl Surf Sci, 2011, 257(16):7172.
24 Braic V, Balaceanu M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J Mechan Behav Biomed Mater, 2012, 10:197.
25 Sobol O V, Andreev A A, Gorban V F, et al. Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the va-cuum-arc method [J]. Techn Phys Lett, 2012, 38(7):616.
26 Grigoriev S N, Sobol O V, Beresnev V M, et al. Tribological cha-racteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method [J]. J Fric Wear, 2014, 35(5):359.
27 Meng F L, Baker I. Nitriding of a high entropy FeNiMnAlCr alloy [J]. J Alloys Compd, 2015, 645:376.
28 Chang Z C, Liang S C, Han S,et al. Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering [J]. Nucl Instrum Methods Phys Res Section B, 2010, 268(16):2504.
29 Liang S C, Chang Z C, Tsai D C, et al. Effects of substrate tempe-rature on the structure and mechanical properties of (TiVCrZrHf)N coatings [J]. Appl Surf Sci, 2011, 257(17):7709.
30 Chang H W, Huang P K, Yeh J W, et al. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings[J]. Surf Coat Technol, 2008, 202:3360.
31 Tsai D C, Chang Z C, Kuo B H, et al. Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering [J]. Appl Surf Sci, 2013, 282:789.
32 Ren B, Yan S Q, Zhao R F, et al. Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering [J]. Surf Coat Technol, 2013, 235:764.
33 Tsai D C, Chang Z C, Kuo B H, et al. Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering [J]. J Alloys Compd, 2014, 616:646.
34 Cheng K H, Lai C H, Lin S J, et al. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering [J]. Thin Solid Films, 2011, 519:3185.
35 Ren B, Shen Z G, Liu Z X. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering [J]. J Alloys Compd, 2013, 560:171.
36 Hsieh M H, Tsai M H, Shen W H, et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings [J]. Surf Coat Technol, 2013, 221:118.
37 Lin Y H. Hard nitride films of AlxCrNbTaTiZr alloy prepared by RF dual magnetron sputtering techniques [D]. Xinzhu:National Tsing Hua University, 2007(in Chinese).
林彦宏. 利用射频磁控溅镀法共镀AlxCrNbTaTiZr高熵合金氮化物薄膜及其性质探讨[D]. 新竹: 新竹清华大学, 2007.
38 Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating [J]. Surf Coat Technol, 2009, 203(13):1891.
39 Wang S W. A study on nitride of six, seven and eight elements high-entropy alloy prepared by RF magnetron sputtering [D]. Xinzhu:National Tsing Hua University, 2006(in Chinese).
王士维. 利用射频磁控溅镀法制备六、七、八元高熵合金氮化物薄膜及其性质探讨[D]. 新竹: 新竹清华大学, 2006.
40 Lai C H, Tsai M H, Lin S J, et al. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings [J]. Surf Coat Technol, 2007, 201:6993.
41 Lin C H, Duh J G, Yeh J W. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputtering [J]. Surf Coat Technol, 2007, 201:6304.
42 Hsueh H T, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx [J]. Surf Coat Technol, 2012, 206(19-20):4106.
43 Tsai D C, Huang Y L, Lin S R, et al. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering[J]. Appl Surf Sci, 2010, 257(4):1361.
44 Tsai D C, Chang Z C, Kuo B H, et al. Interfacial reactions and cha-racterization of (TiVCrZrHf)N thin films during thermal treatment [J]. Surf Coat Technol, 2014, 240:160.
45 Pogrebnjak A D, Yakushchenko I V, Bagdasaryan et al. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions [J]. Mater Chem Phys, 2014, 147:1079.
46 Nemchenko U S, Beresnev V M, et al. Wear resistance of the multicomponent coatings of the (Ti-Zr-Hf-V-Nb-Ta)N system at elevated temperature [J]. J Superhard Mater,2015, 37(5):322.
47 Feng X G, Tang G Z, Ma X X, et al. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation [J]. Nucl Instrum Methods Phys Res B, 2013, 301:29.
48 Lai C H, Cheng K H, Lin S J, et al. Mechanical and tribological pro-perties of multi-element (AlCrTaTiZr)N coatings [J]. Surf Coat Technol, 2008, 202(15): 3732.
49 Ye C F, et al. The effect of nitrogen on the corrosion behavior of high entropy thin films AlCrTaTiZr in 0.1 M sulfuric acid [J]. J Chin Corros Eng, 2009, 23(4):245 (in Chinese).
叶菁馥, 等. 氮含量对AlCrTaTiZr高熵薄膜在0.1 M硫酸溶液中腐蚀性质之影响 [J]. 防蚀工程, 2009, 23(4):245.
50 Lin C H, Duh J G. Corrosion behavior of (Ti-Al-Cr-Si-V)xVy coa-tings on mild steels derived from RF magnetron sputtering [J]. Surf Coat Technol, 2008, 203(5-7):558.
51 Tsai M H, Wang C W, Lai C H, et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization [J]. Appl Phys Lett, 2008, 92(5):052109-1.
52 Chang S Y, Chen M K. High thermal stability of AlCrTaTiZr nitride film as diffusion barrier for copper metallization [J]. Thin Solid Films, 2009, 517(17):4961.
53 Chang S Y, Chen D S. (AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900 ℃[J]. Mater Chem Phys, 2011, 125(1-2):5.
54 Huang P K, Yeh J W. Inhibition of grain coarsening up to 1 000 ℃ in (AlCrNbSiTiV)N superhard coatings [J]. Scr Mater, 2010, 62(2):105.
55 Firstov S A, Gorban V F, Danilenko N I. Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy[J]. Powder Metall Metal Ceram, 2014, 52(9-10):560.
56 Liu J Y, Wu L L. Research progress of high-speed cutting tool materials [J]. Heat Treatment Technol, 2012, 33(1):39 (in Chinese).
刘建永, 吴连连. 高速切削刀具材料的研究进展[J]. 热处理技术与装备,2012, 33(1):39.
57 张子钦,宋寰欣,林奕辰,等. 高熵合金氮化物薄膜被覆于超硬刀具表面制程之微结构与切削性研究[C]//2009绿色科技工程与应用研讨会.台中,2009:372.
58 Chang S Y, Li C E, Chiang S C, et al. 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J]. J Alloys Compd, 2012, 515:4.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[10] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[11] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[12] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[13] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[14] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[15] 陶宏伟, 禹庭, 曹明轩, 吴仲恒, 蔡召兵, 刘敏, 闫星辰. 激光选区熔化CoCrMo合金的组织研究及生物应用[J]. 材料导报, 2024, 38(17): 23030026-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed