Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25020153-8    https://doi.org/10.11896/cldb.25020153
  金属与金属基复合材料 |
陶瓷颗粒增强镍基粉末高温合金的研究进展
孟嘉乐1, 卢春成1, 王恩会1,*, 张雪良2, 石英男2, 贾建2, 侯新梅1
1 北京科技大学碳中和研究院,北京 100083
2 北京钢研高纳科技股份有限公司,北京 100081
Research Progress of Nickel-based Powder Metallurgy Superalloys Reinforced by Ceramic Particle
MENG Jiale1, LU Chuncheng1, WANG Enhui1,*, ZHANG Xueliang2, SHI Yingnan2, JIA Jian2, HOU Xinmei1
1 Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing GAONA Materials & Technology Co., Ltd., Beijing 100081, China
下载:  全 文 ( PDF ) ( 13082KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基粉末高温合金因其优异的综合性能,在航空发动机用涡轮盘等关键构件中发挥重要支撑作用。面向航空发动机推重比不断提高的需求,涡轮前温度不断提升,镍基粉末高温合金性能亟待加强,但受制于固有的强化模式,传统镍基粉末高温合金性能逐渐逼近极限,尽管通过一些强化手段材料性能有所提升,但仍难满足要求。陶瓷颗粒增强技术在性能提升方面表现出良好发展潜力,本文系统综述了陶瓷颗粒增强镍基粉末高温合金的最新进展,包括发展历程及陶瓷颗粒增强的优势,重点分析了负载转移强化、细晶强化、Orowan强化和热膨胀系数错配等主要增强机制的特点,在此基础上讨论了不同增强相对镍基合金力学性能的特定影响。最后提出了未来颗粒增强镍基粉末高温合金的研究方向,以期为镍基粉末高温合金性能提升提供理论支撑和路径参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟嘉乐
卢春成
王恩会
张雪良
石英男
贾建
侯新梅
关键词:  镍基粉末高温合金  陶瓷颗粒增强  增强机制  力学性能    
Abstract: Nickel-based powder metallurgy superalloys play an important supporting role in key components such as turbine disks for aero-engines due to their excellent comprehensive performance. In order to meet the demand for increased aero-engine thrust-to-weight ratios, the turbine inlet temperature (TIT) has been increasing, and the performance of nickel-based powder metallurgy superalloys needs to be strengthened urgently. However, due to the inherent strengthening mode, the performance of traditional nickel-based powder metallurgy superalloys is gradually approaching the limit, and although the performance of the material has been improved through some strengthening means, it is still difficult to meet the requirements. Ceramic particle enhancement technology has shown significant potential in performance enhancement. This paper systematically reviews the latest progress of ceramic particle enhancement of nickel-based powder metallurgy superalloys, including the development history and the advantages of ceramic particle enhancement. It focuses on analyzing the characteristics of the main enhancement mechanisms, including load transfer strengthening, fine grain strengthening, Orowan strengthening and thermal expansion coefficient mismatch, and further discusses the impact of a variety of enhancement phases on the mechanical properties of nickel-based alloys. On this basis, the specific effects of different enhancement phases on the mechanical properties of nickel-based alloys are discussed, and finally, the future research direction of particle-enhanced nickel-based powder metallurgy superalloys is proposed, with a view to providing theoretical support and path reference for the enhancement of nickel-based powder metallurgy superalloys.
Key words:  nickel-based powder metallurgy superalloys    ceramic particulate reinforced    enhanced mechanisms    mechanical property
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TB333  
基金资助: 国家重点研发计划(2022YFB3404501);国家自然科学基金杰出青年基金(52025041)
通讯作者:  *王恩会,博士,北京科技大学碳中和研究院研究员、博士研究生导师。目前主要从事高温合金、耐火材料等方面的研究。wangenhui@ustb.edu.cn   
作者简介:  孟嘉乐,北京科技大学碳中和研究院硕士研究生,在王恩会研究员及侯新梅教授的指导下进行学习、研究,目前主要研究领域为镍基粉末高温合金。
引用本文:    
孟嘉乐, 卢春成, 王恩会, 张雪良, 石英男, 贾建, 侯新梅. 陶瓷颗粒增强镍基粉末高温合金的研究进展[J]. 材料导报, 2026, 40(2): 25020153-8.
MENG Jiale, LU Chuncheng, WANG Enhui, ZHANG Xueliang, SHI Yingnan, JIA Jian, HOU Xinmei. Research Progress of Nickel-based Powder Metallurgy Superalloys Reinforced by Ceramic Particle. Materials Reports, 2026, 40(2): 25020153-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020153  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25020153
1 Li X L, He S M, Zhou X T, et al. Materials Characterization, 2014, 95, 171.
2 Zhou P J, Yu J J, Sun X F, et al. Materials Science and Engineering: A, 2012, 551, 236.
3 Chen P F, Xi W J, Jia J, et al. Journal of Iron and Steel Research, 2020, 32(9), 833(in Chinese).
陈鹏飞, 席文君, 贾建, 等. 钢铁研究学报, 2020, 32(9), 833.
4 Jia J, Luo J P, Zhang H P, et al. Materials Reports, 2024, 38(15), 54(in Chinese).
贾建, 罗俊鹏, 张浩鹏, 等. 材料导报, 2024, 38(15), 54.
5 Wang J, Huang H L, Zhou Y Z, et al. Materials Reports, 2023, 37(21), 242(in Chinese).
王杰, 黄海亮, 周亚洲, 等. 材料导报, 2023, 37(21), 242.
6 Sun Y L, Fu L M, Fu Z Q, et al. Scripta Materialia, 2017, 141, 1.
7 Hu W Q, Huang Z Y, Yu Q, et al. Metals and Materials International, 2021, 27(8), 3003.
8 Pan Y, Kuang F, Lu X. Materials Reports, 2024, 38(21), 179 (in Chinese).
潘宇, 况帆, 路新. 材料导报, 2024, 38(21), 179.
9 Ni J, Chai H, Shi K, et al. Materials Reports, 2019, 33(S2), 369 (in Chinese).
倪嘉, 柴皓, 史昆, 等. 材料导报, 2019, 33(S2), 369.
10 Nie J H, Fan J Z, Wei S H, et al. Aeronautical Manufacturing Technology, 2017, 60(16), 26 (in Chinese).
聂俊辉, 樊建中, 魏少华, 等. 航空制造技术, 2017, 60(16), 26.
11 Hao S M, Mao J W, Xie J P. Powder Metallurgy Industry, 2018, 28(1), 56(in Chinese).
郝世明, 毛建伟, 谢敬佩. 粉末冶金工业, 2018, 28(1), 56.
12 Tjong S C. Materials Science and Engineering: R: Reports, 2013, 74(10), 281.
13 Ding H Y, Fu X L, Dai Q X, et al. Heat Treatment of Metals, 2007, 32(6), 37 (in Chinese).
丁红燕, 符学龙, 戴起勋, 等. 金属热处理, 2007, 32(6), 37.
14 Guo W M, Dong J X, Wu J T, et al. Journal of Iron and Steel Research, 2005, 17(1), 59 (in Chinese).
国为民, 董建新, 吴剑涛, 等. 钢铁研究学报, 2005, 17(1), 59.
15 Zhang Q, Zheng L, Xu W Y, et al. Powder Metallurgy Technology, 2022, 40(5), 387 (in Chinese).
张强, 郑亮, 许文勇, 等. 粉末冶金技术, 2022, 40(5), 387.
16 Liu J W, Cao J H, Song M H, et al. Heilongjiang Science, 2021, 12(14), 14 (in Chinese).
刘佳伟, 曹金华, 宋美慧, 等. 黑龙江科学, 2021, 12(14), 14.
17 Zhu G L, Wang R, Wang W, et al. Journal of Materials Science and Engineering. 2018, 36(3), 496 (in Chinese).
祝国梁, 王瑞, 王炜, 等. 材料科学与工程学报, 2018, 36(3), 496.
18 Ding Y C, Zhang S P, Liu J H. Foundry Technology, 2014, 35(7), 1376 (in Chinese).
丁义超, 张世凭, 刘杰慧. 铸造技术, 2014, 35(7), 1376.
19 Yang D, Zhou Y C, Xu L J, et al. Special Casting & Nonferrous Alloys, 2024, 44(4), 465 (in Chinese).
杨丹, 周玉成, 徐流杰, 等. 特种铸造及有色合金, 2024, 44(4), 465.
20 He Y Q. Hot Working Technology, 2012, 41(2), 133 (in Chinese).
贺毅强. 热加工工艺, 2012, 41(2), 133.
21 Huang Y, Li Y C, Lei B, et al. Journal of Functional Materials, 2022, 53(10), 10071 (in Chinese).
黄颖, 李育川, 雷波, 等. 功能材料, 2022, 53(10), 10071.
22 Nardone V C, Prewo K M. Scripta Metallurgica, 1986, 20(01), 43.
23 Sanaty-Zadeh Amirreza. Materials Science Engineering: A, 2012, 531, 112.
24 Reddy A P, Krishna P V, Rao R N, et al. Journal of Testing and Eva-luation, 2020, (48)4, 3035.
25 Zou Z X, Xiang J Z, Xu S Y. Physics Examination and Testing, 2012, 30(6), 13 (in Chinese).
邹章雄, 项金钟, 许思勇. 物理测试, 2012, 30(6), 13.
26 Srivastava N, Chaudhari G P. Materials Science Engineering: A, 2018, 724, 199.
27 Lu J, Zeng X Q, Ding W J. Light Metals, 2008, 36(8), 59 (in Chinese).
路君, 曾小勤, 丁文江. 轻金属, 2008, 36(8), 59.
28 Zhang Z, Chen D L. Materials Science Engineering: A, 2008, 483, 148.
29 Luan B F, Wu G H, Hansen N, et al. Materials Science and Technology, 2007, 23(2), 233.
30 Kelly P M. Scripta Materialia, 1972, 6(8), 647.
31 Wang Z G. Fabrication and mechanical properties of nano-SiC reinforced aluminum matrix composites by powder metallurgy method. Ph. D. Thesis, Jilin University, China, 2016 (in Chinese).
王治国. 纳米SiC增强铝基复合材料的粉末冶金法制备及其力学性能. 博士学位论文, 吉林大学, 2016.
32 Nie J F, Fan Y, Zhao L, et al. Materials Reports, 2021, 35(9), 9009 (in Chinese).
聂金凤, 范勇, 赵磊, 等. 材料导报, 2021, 35(9), 9009.
33 Wang R, Zhu G L, Zhou W Z, et al. Materials & Design, 2020, 191, 108638.
34 Zhang Y J, Wang M L, Li X F, et al. China Foundry, 2015, 12(4), 251.
35 Arsenault R J, Shi N. Materials Science and Engineering, 1986, 81, 175.
36 Ashby M F. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1970, 21(170), 399.
37 Zhang H Y. A study on the effect of TiB2 addition on microstructure and properties of FGH97 superalloy. Master’s Thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
张翰洋. TiB2添加量对FGH97合金组织性能影响的研究. 硕士学位论文, 哈尔滨工业大学, 2020.
38 Wu C X, Wang Z, Jiang L. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1), 25 (in Chinese).
吴程鑫, 王子, 江亮. 粉末冶金材料科学与工程, 2018, 23(1), 25.
39 Che H Y, Wang T J, Qing W, et al. Powder Metallurgy Industry, 2022, 32(4), 1 (in Chinese).
车洪艳, 王铁军, 秦巍, 等. 粉末冶金工业, 2022, 32(4), 1.
40 Song X J, Wang C Y, Wang Y, et al. Forging & Stamping Technology, 2020, 45(12), 195 (in Chinese).
宋晓俊, 王超渊, 汪煜, 等. 锻压技术, 2020, 45(12), 195.
41 Sun D J, Zhao K, Li G Z, et al. Journal of Alloys and Compounds, 2022, 894, 162366.
42 Xiao L, Liu T T, Chen X H, et al. Materials Reports, 2024, 38(17), 155 (in Chinese).
肖璐, 刘婷婷, 陈先华, 等. 材料导报, 2024, 38(17), 155.
43 Xiao B L, Ma Z Y, Wang Q Z, et al. Materials China, 2010, 29(4), 28 (in Chinese).
肖伯律, 马宗义, 王全兆, 等. 中国材料进展, 2010, 29(4), 28.
44 Ren Y, Lu X C, Xu A F, et al. Heat Treatment, 2011, 26(5), 15 (in Chinese).
任莹, 路学成, 许爱芬, 等. 热处理, 2011, 26(5), 15.
45 Ma G B, Tan J B. Foundry Equipment & Technology, 2019, 215(2), 50 (in Chinese).
马国彬, 谭建波. 铸造设备与工艺, 2019, 215(2), 50.
46 Hattali M L, Valette S, Ropital F, et al. Journal of the European Ceramic Society, 2009, 29(4), 813.
47 Gu Z Y. Preparation process and organization property analysis of ni matrix composites. Master’s Thesis, Tiangong University, China, 2017 (in Chinese).
顾正阳. Ni基复合材料制备工艺与组织性能分析. 硕士学位论文, 天津工业大学, 2017.
48 Walunj G, Bearden A, Patil A, et al. Materials, 2020, 13(22), 5306.
49 Veerappan G, Ravichandran M, Meignanamoorthy M, et al. Silicon, 2021, 13(4), 973.
50 Ding Q H, Ning Z H. Journal of Materials Science and Engineering, 2021, 39(5), 783 (in Chinese).
丁桥华, 宁志华. 材料科学与工程学报, 2021, 39(5), 783.
51 Yang C. Study on the Preparation, Microstructure and property of SiC nanoparticle dispersion strengthening ni-based alloys. Ph. D. Thesis, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, China, 2017 (in Chinese).
杨超. 纳米碳化硅弥散强化镍基合金的制备及显微结构与性能研究. 博士学位论文, 中国科学院研究生院(上海应用物理研究所), 2017.
52 Akhtar F. Materials Science and Engineering: A, 2009, 499(1-2), 415.
53 Mohammed A T, Mahmoud F Z. Silicon, 2018, 10, 1351.
54 Martinez-Franco E, Trejo-Camacho J, Ma C, et al. Journal of Alloys and Compounds, 2022, 927, 166.
55 Xu C E. Studies on preparation and mechanical properties of Y2O3/Carbon nanotubes/nickle matrix composite. Master’s Thesis, Lanzhou University, China, 2009 (in Chinese).
徐常恩. Y2O3/碳纳米管/镍基复合材料的制备及其性能研究. 硕士学位论文, 兰州大学, 2009.
56 Li J, Xiong W H, Yang Q Q, et al. Materials for Mechanical Engineering, 2011, 35(9), 85 (in Chinese).
李俊, 熊惟皓, 杨青青, 等. 机械工程材料, 2011, 35(9), 85.
57 Corthay S, Kutzhanov M K, Narzulloev U U, et al. Materials Letters, 2022, 308, 131285.
58 Tian Y, Li X Y, Jia L M, et al. Foundry Equipment & Technology, 2024, 46(1), 60 (in Chinese).
田燕, 李昕悦, 贾丽敏, 等. 铸造设备与工艺, 2024, 46(1), 60.
59 Cao H Y. Preparation and properties of multi-phase synergetic reinforced Cu matrix composite. Ph. D. Thesis, Yanshan University, China, 2022 (in Chinese).
曹海要. 多相协同增强Cu基复合材料的制备及性能研究. 博士学位论文, 燕山大学, 2022.
[1] 李凌锋, 司瑶晨, 王瑞达, 刘广华, 赵世贤, 李红霞, 李虹屿. 掺CeO2稀土钽酸盐陶瓷材料的性能研究[J]. 材料导报, 2026, 40(2): 24110106-5.
[2] 于晓涛, 袁涌, 王思启. 水老化作用下叠层聚氨酯支座的微相分离机理与力学性能退化研究[J]. 材料导报, 2026, 40(2): 25010201-8.
[3] 李亚莎, 吴雕, 王福达, 周朝威, 王桂斌, 董恒. 纳米ZrO2改性聚丙烯热力学性能的分子动力学模拟[J]. 材料导报, 2026, 40(2): 25010080-7.
[4] 黄海旺, 甘雪薇, 孙建平. 速生木材力学性能强化改性研究进展[J]. 材料导报, 2026, 40(2): 24120204-13.
[5] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[6] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[7] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[8] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[9] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[10] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[11] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[12] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[13] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[14] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[15] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed