Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120127-11    https://doi.org/10.11896/cldb.24120127
  金属与金属基复合材料 |
防腐耐磨高熵合金涂层研究进展
李伟华1,2,3, 周文杰1,2,3, 宋宝睿2,3,*, 黄俊玮4
1 华北水利水电大学土木与交通学院,河南省基础设施腐蚀防控重点实验室,郑州 450046
2 河南省科学院化学研究所,郑州 450046
3 河南省科学院,郑州 450046
4 中国水利水电第十一工程局有限公司,郑州 450001
Research Progress on the Tribo- and Corrosion- Resistant High-entropy Alloy Coatings
LI Weihua1,2,3, ZHOU Wenjie1,2,3, SONG Baorui2,3,*, HUANG Junwei4
1 Henan Key Laboratory of Infrastructure Corrosion and Protection, School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
2 Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, China
3 Henan Academy of Sciences, Zhengzhou 450046, China
4 China Water Conservancy and Hydropower Engineering Bureau No.11 Co., Ltd., Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 62997KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在过去的20年里,作为高熵合金材料的研究热点,高熵合金涂层因比传统涂层表现出更为独特的物理化学特性,如优异的耐腐蚀性、耐磨性和良好的机械强度,而在材料科学领域引起广泛关注。本综述旨在总结当前防腐耐磨高熵合金涂层的研究进展,主要介绍高熵合金的基本概念与常用定义,分析热力学相形成准则,探讨不同制备技术(如激光熔覆、热喷涂、磁控溅射等)的工艺特点及其对高熵合金涂层微观结构和性能的影响。相对于高熵合金块体材料的制备技术,高熵合金涂层的制备方法更易实现快速冷却,使涂层倾向于形成固溶体或非晶相而具备更为优异的综合性能。通过调整合金成分和优化制备工艺参数,可显著提高高熵合金涂层的防腐和耐磨性能。最后,综述了高熵合金涂层在耐腐蚀、耐磨以及磨蚀性能方面的研究现状,分析了当前面临的机遇与挑战,并对未来研究方向及应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟华
周文杰
宋宝睿
黄俊玮
关键词:  高熵合金涂层  制备技术  腐蚀  磨损  磨蚀    
Abstract: In the past 20 years, as a research hotspot in high-entropy alloy materials, high-entropy alloy coatings have attracted widespread attention in the field of materials science due to their unique physical and chemical properties, such as excellent corrosion resistance, wear resistance, and good mechanical strength, compared to traditional coatings. This review aims to summarize the current research progress on the tribo-and corrosion-resistant high-entropy alloy coatings, introduce the basic concepts and commonly used definitions of high-entropy alloys, analyze the thermodynamic phase formation criteria, and explore the process characteristics of different preparation techniques (such as laser cladding, thermal spraying, magnetron sputtering, etc.) as well as their effects on the microstructure and properties of high-entropy alloy coatings. Compared to the preparation technology of high-entropy alloy bulk materials, the preparation method of high-entropy alloy coatings is easier to achieve rapid cooling, making the coating tend to form solid solutions or amorphous phases, which have better comprehensive performance. By adjusting the alloy composition and optimizing the preparation process parameters, the anti-corrosion and wear resistance of high-entropy alloy coatings can be significantly improved. Finally, the research status of high-entropy alloy coatings in terms of corrosion resistance, wear resistance, and abrasion resistance are summarized, and the opportunities and challenges currently faced are analyzed. The future research directions and application prospects are also discussed.
Key words:  high-entropy alloy coating    preparation technology    corrosion    wear    abrasion
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TV47  
基金资助: 河南省省级科技研发计划联合基金“青年科学家”项目(225200810090);河南省重点研发与推广专项(科技攻关)(232102230039);河南省科学院基本科研业务费项目(230618028);河南省科学院科研启动费项目(231818023)
通讯作者:  *宋宝睿,博士,河南省科学院化学研究所助理研究员,主要从事防腐耐磨高熵合金涂层的表界面改性技术及防护机理方面的研究。mse_sophie@163.com   
作者简介:  李伟华,博士,二级教授,华北水利水电大学学术副校长,河南省科学院首席科学家,河南省基础设施腐蚀防控重点实验室主任等。国家杰出青年科学基金获得者,国家“万人计划”科技创新领军人才。主要围绕重大基础设施及工程装备的健康服役问题,致力于严酷腐蚀环境下材料劣化诱发机理、功能性防护涂层材料、腐蚀控制及防御调控新技术研究。
引用本文:    
李伟华, 周文杰, 宋宝睿, 黄俊玮. 防腐耐磨高熵合金涂层研究进展[J]. 材料导报, 2026, 40(2): 24120127-11.
LI Weihua, ZHOU Wenjie, SONG Baorui, HUANG Junwei. Research Progress on the Tribo- and Corrosion- Resistant High-entropy Alloy Coatings. Materials Reports, 2026, 40(2): 24120127-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120127  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120127
1 Ding S, Xiang T, Li C, et al. Materials & Design, 2017, 117, 280.
2 Praveen S, Kim H S. Advanced Engineering Materials, 2018, 20(1), 1700645.
3 Huang P K, Yeh J W, Shun T T, et al. Advanced Engineering Materials, 2004, 6(1-2), 74.
4 Lin C, Duh J. Surface and Coatings Technology, 2008, 203(5-7), 558.
5 Braic V, Balaceanu M, Braic M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 197.
6 El-Aty A A, Xu Y, Zhang S H, et al. Journal of Advanced Research, 2019, 18, 19.
7 Kumar D, Jain J, Gosvami N N. Tribology Letters, 2022, 70(1), 27.
8 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
9 Luo H, Sohn S S, Lu W, et al. Nature Communications, 2020, 11(1), 3081.
10 Xiang K, Chen L Y, Chai L, et al. Applied Surface Science, 2020, 517, 146214.
11 Cheng H, Pan Z, Fu Y, et al. Journal of the Electrochemical Society, 2021, 168(11), 111502.
12 Salam M Y A, Ogunmuyiwa E N, Manisa V K, et al. Results in Engineering, 2025, 104441.
13 Yeh J W. Annales de Chimie-Science des Matériaux, 2006, 31(6), 633.
14 Zhao Y F, Wang Y Q, Wu K, et al. Scripta Materialia, 2018, 154, 154.
15 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13), 4887.
16 Wen Y X, Zhang Y. Metal World, 2023(5), 1 (in Chinese).
温雨欣, 张勇. 金属世界, 2023(5), 1.
17 Chen T, Shun T, Yeh J W, et al. Surface and Coatings Technology, 2004, 188, 193.
18 Feng R, Gao M C, Lee C, et al. Entropy, 2016, 18(9), 333.
19 Zhang Y, Lu Z, Ma S, et al. MRS Communications, 2014, 4(2), 57.
20 Cai Z, Jin G, Cui X, et al. Materials Characterization, 2016, 120, 229.
21 Zhang S, Wu C, Zhang C. Materials Letters, 2015, 141, 7.
22 Wu Z, Wang X, Cao Q, et al. Journal of Alloys and Compounds, 2014, 609, 137.
23 Cui K, Zhang Y. Coatings, 2023, 13(3), 635.
24 Gangireddy S, Gwalani B, Soni V, et al. Materials Science and Enginee-ring A, 2019, 739, 158.
25 Ma Z, Xia C, Zhong H, et al. Surface and Coatings Technology, 2023, 455, 129217.
26 Xia X C, Zhang E K, Ding J, et al. Acta Metallica Sinica, 2025, 61 (1), 59 (in Chinese).
夏兴川, 张恩宽, 丁俭, 等. 金属学报, 2025, 61(1), 59.
27 Cai Y, Chen Y, Manladan S M, et al. Materials & Design, 2018, 142, 124.
28 Arif Z U, Khalid M Y, Ur Rehman E, et al. Journal of Manufacturing Processes, 2021, 68, 225.
29 Chong Z, Sun Y, Cheng W, et al. Materials Today Communications, 2022, 33, 104417.
30 Da Q, Ma G Z, Kang J J, et al. Materials Reports, 2024, 38 (24), 196 (in Chinese).
笪强, 马国政, 康嘉杰, 等. 材料导报, 2024, 38(24), 196.
31 Meghwal A, Anupam A, Murty B, et al. Journal of Thermal Spray Technology, 2020, 29, 857.
32 Dong D X, Liu G Q, Zhang Y, et al. China Metal Forming Equipment Manufacturing Technology, 2023, 58 (4), 57 (in Chinese).
董德骁, 刘国强, 张彦, 等. 锻压装备与制造技术, 2023, 58(4), 57.
33 Liao W B, Wu Z X, Lu W, et al. Intermetallics, 2021, 132, 107138.
34 Wu Z X, He M J, Feng C S, et al. Journal of Thermal Spray Technology, 2022, 1.
35 Noble N, Radhik A N, Sathishkumar M, et al. Tribology International, 2023, 185, 108525.
36 Ju Y, Ai L, Qi X, et al. Materials, 2023, 16(10), 3764.
37 Zou Y, Ma H, Spolenak R. Nature Communications, 2015, 6(1), 7748.
38 Wang Z, Wang C, Zhao Y L, et al. International Journal of Plasticity, 2020, 131, 102726.
39 Wang D L. Study on the corrosion behavior of TiZrHfBeCu(Ni) high-entropy amorphous alloys in 3.5wt% NaCl solution. Master’s Thesis, Huazhong University of Science and Technology, China, 2021 (in Chinese).
王东亮. TiZrHfBeCu(Ni)高熵非晶合金在3.5wt% NaCl溶液中的腐蚀行为研究. 硕士学位论文, 华中科技大学, 2021.
40 Fan J, Yao H W, Pu J B. China Surface Engineering, 2024, 37(6), 21 (in Chinese).
范军, 姚宏伟, 蒲吉斌. 中国表面工程, 2024, 37(6), 21.
41 Zhang G, Liu H, Tian X, et al. Journal of Materials Engineering and Performance, 2020, 29, 278.
42 Gu B, Zhang H, Wang Y, et al. Surface and Coatings Technology, 2024, 494, 131473.
43 Zhao S, He L X, Fan X X, et al. Surface and Coatings Technology, 2019, 375, 215.
44 Zhang S, Cai Z, Pu J, et al. Applied Surface Science, 2019, 483, 870.
45 Li J, Chen Y, Zhao Y, et al. Journal of Alloys and Compounds, 2022, 926, 166807.
46 Song B, Hua Y, Zhou C, et al. Corrosion Science, 2022, 196, 110020.
47 Kang J, Liu H, Du H, et al. Applied Surface Science, 2023, 629, 157368.
48 Chen B, Li X, Tian L, et al. Journal of Alloys and Compounds, 2023, 966, 171630.
49 Zhang X, Cui X, Jin G, et al. Journal of Alloys and Compounds, 2022, 891, 161756.
50 Meghal A, Anupam A, Schulz C, et al. Wear, 2022, 506, 204443.
51 Zhu J, Cheng X, Zhang L, et al. Journal of Alloys and Compounds, 2022, 925, 166698.
52 Rong Z, Wang C, Wang Y, et al. Journal of Alloys and Compounds, 2022, 921, 166061.
53 Wetzel A, Von Der Au M, Dietrich P M, et al. Applied Surface Science, 2022, 601, 154171.
54 Kemény D M, Pálfi N M, Fazakas É. Materials Today: Proceedings, 2021, 45, 4250.
55 Shang C, Axinte E, Ge W, et al. Surfaces and Interfaces, 2017, 9, 36.
56 Shang C, Axinte E, Sun J, et al. Materials & Design, 2017, 117, 193.
57 Guo Y, Shang X, Liu Q. Surface and Coatings Technology, 2018, 344, 353.
58 Heidari E, Atapour M, Obeydavi A. Journal of Alloys and Compounds, 2024, 976, 173265.
59 Ye Q, Feng K, Li Z, et al. Applied Surface Science, 2017, 396, 1420.
60 Zhng W, Wang M, Wang L, et al. Applied Surface Science, 2019, 485, 108.
61 Shi Y, Yang B, Liaw P K. Metals, 2017, 7(2), 43.
62 Listyawan T A, Lee H, Park N, et al. Journal of Materials Science & Technology, 2020, 57, 123.
63 Luo J, Sun W, Liang D, et al. Acta Materialia, 2023, 243, 118503.
64 Alvi S, Jarzabek D M, Kohan M G, et al. ACS Applied Materials & Interfaces, 2020, 12(18), 21070.
65 Ren B, Zhao R F, Zhang G P, et al. Ceramics International, 2022, 48(12), 169011.
66 Liu C, Li Z, Lu W, et al. Nature Communications, 2021, 12(1), 5518.
67 Ren Z, Hu Y, Tong Y, et al. Tribology International, 2023, 182, 108366.
68 Zhao W, Yu K, Ma Q, et al. Tribology International, 2023, 188, 108827.
69 Xu W, Liao M, Liu X, et al. Ceramics International, 2021, 47(17), 24752.
70 Supekar R, Nair R B, Mcdonald A, et al. Wear, 2023, 516, 204596.
71 Chen S, Yan W, Liao B, et al. Ceramics International, 2023, 49(4), 6880.
72 Li R, Wang M, Yuan T, et al. Metallurgical and Materials Transactions A, 2017, 48, 841.
73 Lin D Y, Zhang N N, He B, et al. Journal of Iron and Steel Research International, 2017, 24(2), 184.
74 Ai G G, Jiang F T, Si F, et al. Hot Working Technology, 2025(8), 1(in Chinese).
艾根根, 姜凤阳, 思芳, 等. 热加工工艺, 2025(8), 1.
75 Wang Z H, Fu J W, Feng Y, et al. The Chinese Journal of Nonferrous Metals, 2025, 35(3), 805(in Chinese).
王子豪, 付俊伟, 冯勇, 等. 中国有色金属学报, 2025, 35(3), 805.
76 Fu Y C, Hao Q W, Qian J, et al. Journal of Chinese Society for Corrosion and Protection, 2024, 44(6), 1529.
77 Lu Z, Mao Y, Ren S, et al. Materials Characterization, 2021, 176, 111115.
78 Fu Z, Ding S, Tian A, et al. Reviews on Advanced Materials Science, 2024, 63(1), 20240018.
79 Ge Y, Cheng J, Mo J, et al. Journal of Alloys and Compounds, 2024, 976, 173173.
80 Li J, Dong L, Dong X, et al. Applied Surface Science, 2021, 570, 151236.
81 Papageorgiou N, von Bonin A. Tribology International, 2014, 73, 177.
82 Zhang H, Guan T, Zhang N, et al. International Journal of Machine Tools and Manufacture, 2021, 170, 103802.
83 Yu S, Hu Y, Liu X, et al. Metals, 2022, 12(10), 1561.
84 Liu Z C, Kong D J. Corrosion Science, 2024, 227, 111766.
85 Zhang X, Yu Y, Li T, et al. Tribology International, 2024, 193, 109401.
[1] 钟海霞, 钟庆东, 杨健, 章书剑, 王雪妹, 范佳宝. AlCl3-EMIC离子液体电沉积Al-Ti合金及耐蚀性研究[J]. 材料导报, 2026, 40(2): 24100244-7.
[2] 宋海鹏, 张冠, 范雪茹, 黄勇, 谢磊, 赵冬梅, 李强, 任铁真. 过渡族金属微量添加对Fe基块状金属玻璃的玻璃形成能力、力学性能和耐腐蚀性的影响[J]. 材料导报, 2026, 40(2): 24120223-7.
[3] 彭丹珉, 孙志鹏, 胡述伟, 周明扬, 高阳, 邱玺, 张坤, 李垣明. 锆合金均匀腐蚀模型研究进展[J]. 材料导报, 2026, 40(2): 24120206-7.
[4] 刘国建, 孙锦滢, 曲洪漩, 徐家乐, 蒋域蓉, 沈方敏. 基于反应分子动力学的混凝土模拟孔溶液中钢筋腐蚀行为研究[J]. 材料导报, 2026, 40(2): 24120115-7.
[5] 徐超亮, 全琪炜, 武焕春, 李远飞, 贾文清, 尹建, 李时磊, 宋淼, 张乐福, 刘向兵, 郭相龙. 轻水反应堆环境对不锈钢辐照促进应力腐蚀开裂的影响综述[J]. 材料导报, 2026, 40(1): 25010139-11.
[6] 秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
[7] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[8] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[9] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[10] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[11] 袁均相, 刘国建, 刘志勇, 佘伟, 张云升. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J]. 材料导报, 2025, 39(8): 24030019-7.
[12] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[13] 邹晓惠, 刘永飞, 李丹, 姚海元, 董磊磊, 徐云泽. 马氏体钢和高锰钢在人工海水中的冲刷腐蚀行为研究[J]. 材料导报, 2025, 39(8): 24030170-8.
[14] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[15] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed