Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120151-10    https://doi.org/10.11896/cldb.24120151
  无机非金属及其复合材料 |
冻融循环和疲劳荷载协同作用下水泥沥青砂浆的性能劣化试验研究
吴熙1,2, 郑宁3, 李路帆1,2,*, 孙苗苗1,2, 周欣竹3
1 浙大城市学院土木工程系,杭州 310015
2 浙大城市学院城市基础设施智能化浙江省工程研究中心,杭州 310015
3 浙江工业大学土木工程学院,杭州 310032
Experimental Study on the Performance Degradation of Cement Asphalt Mortar Subjected to Combined Freeze-Thaw Cycles and Fatigue Load
WU Xi1,2, ZHENG Ning3, LI Lufan1,2,*, SUN Miaomiao1,2, ZHOU Xinzhu3
1 Department of Civil Engineering,Hangzhou City University,Hangzhou 310015, China
2 Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou City University, Hangzhou 310015, China
3 College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310032, China
下载:  全 文 ( PDF ) ( 38543KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究冻融循环和疲劳荷载协同作用对水泥沥青砂浆(CA砂浆)性能劣化的影响,通过单一冻融循环、单一疲劳加载及先冻融后疲劳加载三种损伤试验,分析了不同致损因素下CA砂浆的表面形态与最终破坏模式变化,以及变形曲线、抗压强度、相对弹性模量等相关参数的劣化规律,并通过计算机断层扫描(CT)对试件内部损伤发展进行阶段性跟踪,配合扫描电镜试验,从微观层面探寻其损伤机理。研究表明,冻融循环和疲劳荷载作用均会造成CA砂浆单轴抗压强度和弹性模量的降低;先冻融循环后疲劳荷载作用下,随着冻融循环次数的增加,CA砂浆在疲劳过程中的塑性变形能显著增加,冻融10次后增幅达71.2%。同时,CA砂浆的抗压强度和弹性模量损伤幅度不断加剧,其中冻融0、5、10次的CA砂浆在疲劳2 000次后抗压强度分别降低了12.0%、16.13%、18.47%,弹性模量分别降低了10.25%、16.92%、20.96%。CT试验以及扫描电镜试验的结果表明,冻融循环会加速CA砂浆在疲劳过程中内部孔隙的劣化,加速CA砂浆在疲劳过程中裂缝的拓展与损伤的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴熙
郑宁
李路帆
孙苗苗
周欣竹
关键词:  水泥沥青砂浆  冻融循环  疲劳荷载  强度劣化  微观结构    
Abstract: To study the effects of freeze-thaw cycles and fatigue load on the performance of cement asphalt mortar (CA mortar), three damage experiments, namely single freeze-thaw cycles, single fatigue loading, and combined fatigue loading after freeze-thaw cycles, were conducted on CA mortar specimens. The changes in mortar surface morphology and final failure mode under different damage degrees, as well as the degradation laws of different parameters such as deformation curve, compressive strength, and relative elastic modulus were studied. At the same time, computer tomography (CT) was used to track the entire process of internal damage development of the specimens to explore its damage mechanism from the microscopic level. The findings show that both single freeze-thaw cycles and single fatigue loads causes a reduction in the uniaxial compressive strength and elastic modulus of CA mortar. Under the action of fatigue load after freeze-thaw cycles, with the increase in the number of freeze-thaw cycles, the plastic deformation energy of CA mortar during fatigue continuously increases. After 10 freeze-thaw cycles, the fatigue plastic deformation energy increases by approximately 71.2%. Under the action of fatigue load after freeze-thaw cycles, with the increase in the number of freeze-thaw cycles, the damage amplitudes of compressive strength and elastic modulus of CA mortar during fatigue continuously intensify. After 2 000 fatigue cycles, the compressive strengths of CA mortar with 0, 5, and 10 freeze-thaw cycles are reduced by 12.0%, 16.13% and 18.47%, respectively, and the elastic moduli are reduced by 10.25%, 16.92%, and 20.96%, respectively. The CT scanning test shows that freeze-thaw cycles lead to the degradation of internal pores in CA mortar, and accelerate the expansion and extension of cracks in CA mortar during fatigue, as well as the development of damage.
Key words:  cement asphalt mortar    freeze-thaw cycle    fatigue load    strength deterioration    microstructure
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  U214  
基金资助: 国家自然科学基金(51708495;52178255;52278279);浙江省自然科学基金(LY20E080006);浙大城市学院科研培育基金(X-202107;X-202109)
通讯作者:  *李路帆,博士,浙大城市学院副研究员。目前主要从事低碳胶凝材料、固废资源化利用、生命周期评估等相关研究。lilf@hzcu.edu.cn   
作者简介:  吴熙,博士,浙大城市学院土木工程系副教授、硕士研究生导师,目前主要从事沥青路面服役性能评估、新型水泥基材料力学性能和耐久性、市政基础设施结构安全控制技术等方面的研究。
引用本文:    
吴熙, 郑宁, 李路帆, 孙苗苗, 周欣竹. 冻融循环和疲劳荷载协同作用下水泥沥青砂浆的性能劣化试验研究[J]. 材料导报, 2026, 40(2): 24120151-10.
WU Xi, ZHENG Ning, LI Lufan, SUN Miaomiao, ZHOU Xinzhu. Experimental Study on the Performance Degradation of Cement Asphalt Mortar Subjected to Combined Freeze-Thaw Cycles and Fatigue Load. Materials Reports, 2026, 40(2): 24120151-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120151  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120151
1 Yuan Q, Xiang G K, Zheng X G, et al. Journal of the China Railway Society, 2024, 24(12), 1(in Chinese).
元强, 向功坤, 郑新国, 等. 铁道学报, 2024, 24(12), 1.
2 Xu H, Zhang H D, Zhou S X, et al. Materials Reports, 2024, 38(20), 132(in Chinese).
徐浩, 张浩东, 周双喜, 等. 材料导报, 2024, 38(20), 132.
3 Xu H, Zhang H D, Zhou S X, et al. Railway Standard Design, 2024, 68(11), 60(in Chinese).
徐浩, 张浩东, 周双喜, 等. 铁道标准设计, 2024, 68(11), 60.
4 Li Y, Xie B, Hu S G, et al. China Civil Engineering Journal, 2010, 43(S2), 358(in Chinese).
李悦, 谢冰, 胡曙光, 等. 土木工程学报, 2010, 43(S2), 358.
5 Wang P, Wang B, Xu H. Journal of Railway Engineering Society, 2015, 32(7), 29(in Chinese).
王平, 王彪, 徐浩. 铁道工程学报, 2015, 32(7), 29.
6 Niu D Y, Chen H X, Ren Q L Z, et al. Journal of Hefei University of Technology(Natural Science), 2018, 41(7), 943(in Chinese).
牛冬瑜, 陈华鑫, 仁乾龙珠, 等. 合肥工业大学学报(自然科学版), 2018, 41(7), 943.
7 Sun H J. Research on damage characteristicsand mechanism of emulsified asphaltcement mortar under freeze-thaweffects. Master’s Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
孙海蛟. 乳化沥青水泥砂浆冻融损伤特性及机理研究. 硕士学位论文, 哈尔滨工业大学, 2020.
8 Guo Y C, Shen A Q, He T Q, et al. Journal of Traffic and Transportation Engineering, 2016, 16(5), 9(in Chinese).
郭寅川, 申爱琴, 何天钦, 等. 交通运输工程学报, 2016, 16(5), 9.
9 Sun W, Zhang Y M, Yan H D, et al. Cement and Concrete Research, 1999, 29(9), 1519.
10 Xu Y, Yuan Q, Schutter G D, et al. Construction and Building Materials, 2024, 436, 13.
11 Kou J L, Zhang Y R, Zhang J. Journal of Natural Disasters, 2019, 28(5), 11(in Chinese).
寇佳亮, 张亚茹, 张晶. 自然灾害学报, 2019, 28(5), 11.
12 Lu J Z, Tian L Z, Tong L Q, et al. Journal of Basic Science and Engineering, 2018, 26(5), 12(in Chinese).
逯静洲, 田立宗, 童立强, 等. 应用基础与工程科学学报, 2018, 26(5), 12.
13 Lu J, Zhu K, Tian L, et al. Construction and Building Materials, 2017, 152, 847.
14 Zhang N. Experimental study on the damage characteristics of concrete under the multiple interactions of fatigue loading and freezing-thawing cycles. Master’s Thesis, Yantai University, China, 2018(in Chinese).
张楠. 疲劳荷载与冻融循环多次交互作用下混凝土损伤特性试验研究. 硕士学位论文, 烟台大学, 2018.
15 Science and Technology Department of the Ministry of Railways. Provisional technical conditions for cement emulsified asphalt mortar for CRTS II type plate-type ballastless track of passenger dedicated line railway, China Railway Publishing House, China, 2014(in Chinese).
铁道部科技技术司. 客运专线铁路CRTSII型板式无砟轨道水泥乳化沥青砂浆暂行技术条件, 中国铁道出版社, 2008.
16 Yang J L. Mechanical properties and fine structure of CA mortar under temperature cycling. Master’s Thesis, Southwest Jiaotong University, China, 2019(in Chinese).
杨吉龙. 温度循环下CA砂浆力学特性与细观结构研究. 硕士学位论文, 西南交通大学, 2019.
17 Huang X Q, Zhang T F, Wang X P, et al. Journal of China Three Gorges University(Natural Sciences), 2022, 44(6), 58(in Chinese).
黄小晴, 张庭风, 王小平, 等. 三峡大学学报(自然科学版), 2022, 44(6), 58.
18 Hua L M. Research on microstructure and durability of cement-emulsified asphalt mortar. Master’s Thesis, Yangzhou University, China, 2023(in Chinese).
花良茂. 水泥乳化沥青砂浆微结构及耐久性研究. 硕士学位论文, 扬州大学, 2023.
19 Yang K N. Study on the mechanical properties and durability evolution of cement emulsified bituminous mortar for CRTS-I type slab ballastless tracks. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2022(in Chinese).
杨柯楠. CRTS-Ⅰ型板式无砟轨道水泥乳化沥青砂浆力学性能与耐久性演变微观机理研究. 硕士学位论文, 北京建筑大学, 2022.
[1] 余光垒, 李亮, 征西遥, 吴俊, 杜修力. 矿渣-粉煤灰基地质聚合物固化铅污染土冻融特性研究[J]. 材料导报, 2026, 40(2): 25010037-7.
[2] 周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
[3] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[4] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[5] 梁志超, 任文渊, 李双村, 张爱军, 王毓国. 冻融和易溶盐对石灰固化伊犁黄土强度及水稳性的影响[J]. 材料导报, 2025, 39(6): 23120250-8.
[6] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[7] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[8] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[9] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[10] 翟子权, 段鸿莺, 吕颖慧, 张西文, 赵鹏, 张云升. 北京故宫神厨屋面灰背和夹垄灰浆成分及微结构对比分析[J]. 材料导报, 2025, 39(24): 24090214-10.
[11] 马硕, 蒋义, 高小建. C-S-H晶种对蒸汽养护水泥基材料强度的影响规律与作用机理[J]. 材料导报, 2025, 39(24): 24120059-7.
[12] 邵杰, 陈筝, 刘舒介, 罗淑见. 水热处理废弃咖啡渣对混凝土性能的影响及其机理研究[J]. 材料导报, 2025, 39(24): 24110107-7.
[13] 杨佳奇, 李海军, 李皓云, 廉杰, 王小维, 宋祎鹏, 张瑞娟, 杨帆, 杨吉军. 辐照对AlxCrMoNbZr高熵合金涂层微观结构和力学性能的影响研究[J]. 材料导报, 2025, 39(24): 24120102-8.
[14] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[15] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed