Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120156-8    https://doi.org/10.11896/cldb.24120156
  金属与金属基复合材料 |
核电316H奥氏体不锈钢疲劳损伤机制与温度敏感性研究
董贺展1, 余婷1, 宋宇轩1,2,*, 王志强1, 蔡智会4, 金伟娅1,2,3, 蒋炎尧1,2, 高增梁1,2,3,*
1 浙江工业大学化工机械设计研究所,杭州 310023
2 嵊州市浙江工业大学创新研究院,浙江 嵊州 312400
3 浙江工业大学过程装备及其再制造教育部工程研究中心,杭州 310014
4 温州市特种设备检测科学研究院,浙江 温州 325038
Study on Fatigue Cracking Mechanism and Temperature Sensitivity of 316H Austenitic Stainless Steel
DONG Hezhan1, YU Ting1, SONG Yuxuan1,2,*, WANG Zhiqiang1, CAI Zhihui4, JIN Weiya1,2,3, JIANG Yanyao1,2, GAO Zengliang1,2,3,*
1 Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2 Institute of Innovation Research of Shengzhou and Zhejiang University of Technology, Shengzhou 312400, Zhejiang, China
3 Engineering Research Center of Process Equipment and Re-manufacturing Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
4 Special Equipment Testing Science Research Institute, Wenzhou 325038, Zhejiang, China
下载:  全 文 ( PDF ) ( 25146KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 316H奥氏体不锈钢具有优异的高温性能,是第Ⅳ代核电高温气冷堆一回路管道的候选材料之一。然而,其结构构件在高温下仍然存在非预期疲劳开裂现象,亟需深入分析其疲劳失效机制,揭示其高温下的疲劳损伤机理。本工作开展不同温度的316H不锈钢拉伸试验,发现屈服强度与抗拉强度随试验温度的升高逐渐降低,但延伸率则在常温至300 ℃的范围内随温度的升高而降低,在300~550 ℃之间出现平台,在550 ℃以上随试验温度的升高而增大。通过开展常温和高温气冷堆服役温度600 ℃条件下的316H不锈钢低周疲劳实验,获得了常温与高温下的循环应力-应变特征,分别构建了S-N曲线,通过微观表征技术对拉伸与疲劳的微观组织结构演化、断口形貌进行分析,研究其断裂机理。结果表明:300 ℃以下晶界结构稳定,主要为穿晶断裂机制;而550 ℃以上晶界出现析出物,拉伸断口呈现出部分沿晶断裂特征。在常温与高温下均呈现出循环硬化、循环软化、快速失效三个阶段,且高温实验后晶粒尺寸变大,而常温下晶粒无明显变化,但几何必须位错密度(GND)增加明显。此外,常温下疲劳裂纹的启裂机制为滑移带累积导致材料表面出现疲劳裂纹源;而高温下,裂纹启裂位置氧化严重,呈现出疲劳-氧化协同启裂特征。研究结果对高温气冷堆一回路管道的设计、运维与表面强化延寿有重要科学意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董贺展
余婷
宋宇轩
王志强
蔡智会
金伟娅
蒋炎尧
高增梁
关键词:  高温气冷堆  316H奥氏体不锈钢  疲劳  高温  疲劳损伤机制    
Abstract: 316H austenitic stainless steel is one of the candidate materials for the first circuit piping in the high temperature gas-cooled reactors of Gene-ration IV nuclear power plants by virtue of its excellent high temperature performance. However, unexpected fatigue cracking occurs inits structural components at high temperatures, and there is an urgent need to understand the fatigue failure mechanism. In the current research, tensile experiments of 316H stainless steel at different temperatures were carried out. It was found that the yield strength and the ultimate strength gradually decrease with the increase in temperature, while the elongation decreases with increasing temperature in the range from room temperature to 300 ℃. A plateau appears in the range of 300 ℃ to 550 ℃, and the elongation increases with the increase of the test temperature above 550 ℃. By carrying out low frequency fatigue experiments of the material at room temperature and at the gas-cooled reactor service temperature of 600 ℃, the cyclic stress-strain characteristics and the S-N curves at both temperatures were obtained. The microstructural evolution under static tension and low cycle fatigue and the fracture profiles of the tested specimens were analyzed by micro characterization techniques, and the fracture mechanism was studied. The results show that the structure of the grain boundary is stable below 300 ℃, and fatigue cracking is mainly due to transgranular fracture; while precipitates appear in the grain boundaries above 550 ℃ and the tensile fracture shows a characteristic of partial intergranular fracture. At both room and high temperatures, the material exhibits three distinct cyclic stages: cyclic hardening, cyclic softening, and rapid failure. Post-fatigue characterization reveals significant grain coarsening at high temperature, whereas at room temperature, the grain size remains stable while the geometrically necessary dislocation (GND) density increases markedly. Furthermore, the fatigue crack initiation mechanisms differ: at room temperature, cracks originate from the surface due to slip-band accumulation; in contrast, at high temperature, the initiation sites suffer from severe oxidation, manifesting a fatigue-oxidation synergistic initiation characteristic.
Key words:  high-temperature gas-cooled piping    316H austenitic stainless steel    fatigue    high temperature    fatigue initiation cracking mechanism
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TL341  
  TG142.71  
基金资助: 国家自然科学基金青年项目(52305168);浙江省自然科学基金青年项目(LQ24E050020);温州市市场监督管理局科研计划项目(2024012);浙江省自然科学基金重点项目(LZ22E050004)
通讯作者:  *宋宇轩,浙江工业大学特聘副研究员。长期从事高温压力容器结构完整性与高效智能检测装备研发工作,研究方向为机械装备结构完整性、航空发动机单晶叶片铸造。songyux@zjut.edu.cn;
高增梁,浙江工业大学机械工程学院教授、博士研究生导师。研究方向为机械装备结构完整性和安全评估,高效过程装备研究开发。zlgao@zjut.edu.cn   
作者简介:  董贺展,现为浙江工业大学机械工程学院硕士研究生,在蒋炎尧教授,宋宇轩副研究员的指导下进行研究。目前主要研究领域为金属材料学,研究方向为金属材料及其表面强化。
引用本文:    
董贺展, 余婷, 宋宇轩, 王志强, 蔡智会, 金伟娅, 蒋炎尧, 高增梁. 核电316H奥氏体不锈钢疲劳损伤机制与温度敏感性研究[J]. 材料导报, 2026, 40(2): 24120156-8.
DONG Hezhan, YU Ting, SONG Yuxuan, WANG Zhiqiang, CAI Zhihui, JIN Weiya, JIANG Yanyao, GAO Zengliang. Study on Fatigue Cracking Mechanism and Temperature Sensitivity of 316H Austenitic Stainless Steel. Materials Reports, 2026, 40(2): 24120156-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120156  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120156
1 Zhao Y X, Xiong R, Liang B, et al. Nuclear Power Engineering, 2023, 44(5), 237(in Chinese).
赵宇翔, 熊茹, 梁波, 等. 核动力工程, 2023, 44(5), 237.
2 Bao F D. Research on high temperature and low cycle fatigue perfor-mance of nuclear grade 316H steel and its welded joints. Master’s Thesis, Tianjin University, China, 2021(in Chinese).
鲍方栋. 核级 316H 钢及其焊接接头的高温低周疲劳性能研究. 硕士学位论文, 天津大学, 2021.
3 Dong G S, Gao B, Wang Z B, et al. International Journal of Fatigue, 2023, 168, 107425.
4 Wang Q, Sun Q Y, Xiao L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2016, 649, 359.
5 Lei Y B, Wang Z B, Zhang B, et al. Acta Materialia, 2021, 208, 116773.
6 Cheng Y, Lin Z, Xie S, et al. International Journal of Fatigue, 2024, 186, 108415.
7 Li X, Chang L, Liu C, et al. Corrosion Science, 2021, 191, 109784.
8 Yoon J H, Hong S, Koo G H, et al. Journal of the Korean Institute of Metals and Materials, 2015, 53(10), 681.
9 Zhao L, Qi X, Xu L, et al. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(2), 533.
10 Xu L Y, Bao F D, Zhao L, et al. Journal of Nuclear Materials, 2021, 546, 152758.
11 Yang J, Li B, Wang K, et al. International Journal of Fatigue, 2024, 188, 108523.
12 Gao Y F, Liang X B, Deng X L. Tensile testing of metallic materials-Part 1: Implementation guidelines for room temperature testing methods: GB-T228. 1-2021, China Quality and Standards Publishing House, China, 2014(in Chinese)
高怡斐, 梁新帮, 邓星临. 金属材料拉伸试验第 1 部分: 室温试验方法实施指南: GB-T228. 1-2021. 中国质检出版社, 2014,
13 Huang H W, Wang Z B, Lu J, et al. Acta Materialia, 2015, 87, 150.
14 Yin P, Zhang W, Zhang Y, et al. Materials Science and Engineering: A, 2023, 849, 143494.
15 Sourabh K, Singh J B. Journal of Materials Engineering and Perfor-mance, 2022, 31(5), 3821.
16 Zhang Z, Li A, Wang Y P, et al. Materials Science and Engineering: A, 2020, 794, 139928.
17 Long J, Pan Q, Tao N, et al. Materials Research Letters, 2018, 6, 456.
18 Pan Z X, Li Y B, Song Y X, et al. International Journal of Pressure Vessels and Piping, 2022, 200, 104774.
19 Mo Y F, Du R, Ma H S, et al. Mechanics and Practice, 2022, 44 (3), 564(in Chinese)
莫亚飞, 杜柔, 马寒松, 等. 力学与实践, 2022, 44(3), 564.
20 Geng D, Sun Q, Xin C, et al. Nanomaterials, 2021, 11, 3125.
21 Choudhury S S, Poddar P, Datta P. Materials & Design, 2021, 198, 109315.
22 Colin J, Fatemi A, Taheri S, et al. Journal of Materials Science, 2010, 45(6), 1599.
23 Wang Y, Zhang X, Li J, et al. Materials Science and Engineering: A, 2020, 779, 139135.
24 Ho H S, Lv C, Zhou W, et al. Fatigue and Fracture of Engineering Materials, 2022, 45, 1818.
25 Shiozawa K, Morii Y, Nishino S, et al. International Journal of Fatigue, 2006, 28, 1521.
26 Zhao Y, Gong B, Liu Y, et al. International Journal of Fatigue, 2024, 178, 107993.
27 Zhao X, Xue G, Liu Y, et al. Resultsin Physics, 2017, 7, 1845.
28 Xu C, Liang Y, Yang M, et al. Materials, 2021, 14, 2565.
29 Hyde J M, Sandiford R D. International Journal of Pressure Vessels and Piping, 2007, 84(3), 123.
30 Wang K, Tao N R, Liu G, et al. Acta Materialia, 2006, 54(19).
31 Chemkhi M, Retraint D, Roos A, et al. Surface and Coatings Technology, 2013, 221, 191.
32 Zhou J, Retraint D, Sun Z, et al. Surface and Coatings Technology, 2018, 349, 556.
33 Xu W, Liu X C, Lu K, et al. Acta Materialia, 2018, 152, 138.
34 Zhang S J, Xie J J, Jiang Q Q, et al. Materials Science & Engineering, 2017, 700, 66.
35 Wang Y, Yuan L C, Zhang S J, et al. Engineering Fracture Mechanics, 2019, 209, 369.
36 Ma Z W, Liu J B, Wang G, et al. Scientific Reports, 2016, 6, 1.
37 Chen W, You Z S, Tao N R, et al. Acta Materialia, 2017, 125, 255.
38 Sun R J, Keller S, Zhu Y, et al. International Journal of Fatigue, 2021, 145, 106081.
39 Zhang X, Zhao J F, Kang G Z, et al. International Journal of Plasticity, 2023, 163, 103553.
40 Gao X, Zhang L F, Yang M, et al. Oxidation of Metals, 2021, 96(3), 231.
41 Liu T, Wang Q, Zhang J, et al. International Journal of Fatigue, 2023, 167, 107321.
42 Xu J, Zhao Y H, Zhang M, et al. Materials Characterization, 2022, 185, 111750.
43 Long J, Pan Q, Tao N, et al. Acta Materialia, 2019, 166, 56.
[1] 吴熙, 郑宁, 李路帆, 孙苗苗, 周欣竹. 冻融循环和疲劳荷载协同作用下水泥沥青砂浆的性能劣化试验研究[J]. 材料导报, 2026, 40(2): 24120151-10.
[2] 孟嘉乐, 卢春成, 王恩会, 张雪良, 石英男, 贾建, 侯新梅. 陶瓷颗粒增强镍基粉末高温合金的研究进展[J]. 材料导报, 2026, 40(2): 25020153-8.
[3] 杜泽京, 朱艳坤, 张鹏, 张哲峰. 42CrMoVRE轴承钢滚动接触疲劳行为的有限元模拟研究[J]. 材料导报, 2026, 40(2): 25010196-6.
[4] 陈伟, 侯思凡, 王伟, 范锦鹏. 耐高温氧化铝基纳米棒气凝胶的制备与性能研究[J]. 材料导报, 2026, 40(1): 25020183-9.
[5] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[6] 易世凤, 陈小敏. 基于Oyane-Sato准则的GH4169合金高温断裂行为研究[J]. 材料导报, 2026, 40(1): 25010099-7.
[7] 李丛, 赵雷, 徐连勇, 韩永典, 郝康达. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J]. 材料导报, 2025, 39(9): 24040126-10.
[8] 盛红飞, 邓黎鹏, 易润华, 李海涛, 程东海, 黄斌. DD5合金钎焊前电阻焊定位界面成形及性能分析研究[J]. 材料导报, 2025, 39(9): 24030006-5.
[9] 陈泰黎, 牛凡, 徐良辉, 陈新悦, 侯枭伟, 孙奖, 司艳, 方修洋, 蔡振兵. GH4169镍基高温合金的飞秒激光制孔性能研究[J]. 材料导报, 2025, 39(9): 24020029-7.
[10] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[11] 任永忠, 舒天浩, 李鑫林, 张振宇, 梁补女, 李天义, 金志华. 基于化学刻蚀法构筑超疏水沙子表面及其性能研究[J]. 材料导报, 2025, 39(6): 23050086-5.
[12] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[13] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[14] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[15] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed