Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120179-6    https://doi.org/10.11896/cldb.24120179
  金属与金属基复合材料 |
B2-NiAl强化相多晶向拉伸载荷变形机制的分子动力学研究
于洋1,2, 王海燕1,2,3, 高雪云1,2,3,*, 林鸿亮3
1 内蒙古科技大学材料科学与工程学院,内蒙古 包头 014010
2 内蒙古自治区新金属材料重点实验室,内蒙古 包头 014010
3 广东广青金属科技有限公司,广东 阳江 529533
Molecular Dynamics Study on Deformation Mechanism of B2-NiAl Reinforcement Phase Under Multi-crystallographic Directional-tension
YU Yang1,2, WANG Haiyan1,2,3, GAO Xueyun1,2,3,*, LIN Hongliang3
1 School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Inner Mongolia Key Laboratory of New Metal Materials, Baotou 014010, Inner Mongolia, China
3 Guangdong Guangqing Metal Technology Co., Ltd., Yangjiang 529553, Guangdong, China
下载:  全 文 ( PDF ) ( 31870KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用分子动力学方法研究了B2-NiAl相拉伸过程中的力学性能和原子行为。在恒定300 K温度下,分别在[001]、[011]、[111]晶向上,以不同应变速率进行拉伸模拟,探究拉伸晶向和应变速率对B2-NiAl相力学行为和原子结构演变的影响。结果表明:不同的应变速率对B2-NiAl相的力学行为和原子结构演变未产生明显影响,仅会改变[011]和[111]晶向拉伸的失效阶段产生的裂缝形态。沿[001]晶向的拉伸变形导致B2-NiAl中出现了符合Bain关系的B2相→L10相转变,这种现象在[011]和[111]晶向的拉伸过程中并未发生。此外,在[001]方向的拉伸中B2-NiAl相的屈服强度和塑性最佳,其应力峰值达到20.295 GPa,失效时延伸率达到32%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于洋
王海燕
高雪云
林鸿亮
关键词:  B2-NiAl相  分子动力学  应变速率  拉伸方向    
Abstract: Molecular dynamics simulations were adopted to investigate the mechanical properties and atomic behavior of the B2-NiAl phase during tensile deformation in this study. Tensile simulations were conducted along the [001], [011], and [111] crystallographic orientations at va-rious strain rates to explore the effects of tensile direction and strain rate on mechanical behavior and atom structure evolution of B2-NiAl. The results show that change of strain rates possesses no obvious effect on the mechanical behavior and atomic structure evolution of the B2-NiAl phase, while change the crack morphology produced in the failure stage of tensile along the [011] and [111] direction. The tensile deformation along the [001] direction leads to a B2 phase→L10 phase transition in accordance with the Bain path relationship, which does not occur during tensile stretching in the [011] and [111] directions. The B2-NiAl phase exhibited the optimal combination of yield strength and ductility in the [001] direction, with a peak stress of 20.295 GPa and an elongation at failure of 32%.
Key words:  B2-NiAl phase    molecular dynamics    strain rate    tensile direction
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TG131  
基金资助: 国家自然科学基金(52161008;52361012);中央引导地方科技发展资金(2022ZY0072);阳江市合金材料与五金刀剪重点产业人才振兴计划专项基金(RCZX2022020);内蒙古自治区直属高校基本科研业务费(2023QNJS006)
通讯作者:  *高雪云,博士,研究员,硕士研究生导师。主要从事基于稀土与铌优势资源高性能金属材料研发、金属材料微观组织的理论计算与数值模拟等方面的研究。gaoxueyun126@163.com   
作者简介:  于洋,内蒙古科技大学材料科学与工程学院硕士研究生,研究方向为先进金属材料组织与控制性能。
引用本文:    
于洋, 王海燕, 高雪云, 林鸿亮. B2-NiAl强化相多晶向拉伸载荷变形机制的分子动力学研究[J]. 材料导报, 2026, 40(2): 24120179-6.
YU Yang, WANG Haiyan, GAO Xueyun, LIN Hongliang. Molecular Dynamics Study on Deformation Mechanism of B2-NiAl Reinforcement Phase Under Multi-crystallographic Directional-tension. Materials Reports, 2026, 40(2): 24120179-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120179  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120179
1 Wu Z Z, Zhao N, Lu Y, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(6), 1926.
2 Xin S S, Wang Z H, Li C L, et al. Materials Reports, 2020, 34(7), 7130 (in Chinese).
信思树, 王镇华, 李春玲, 等. 材料导报, 2020, 34(7), 7130.
3 Luo H W, Shen G H. Acta Metall, 2020, 56(4) 494 (in Chinese).
罗海文, 沈国慧. 金属学报, 2020, 56(4), 494.
4 Cao W Q, Zhang M D, Huang C X, et al. Scientific Reports, 2017, 7(1), 41459.
5 Xiao Y J, Xiong X Y, Sun G Y, et al. Materials Characterization, 2022, 191, 112184.
6 Wang X J, Shen Q, Yan J J, et al. Acta Metall urgica Sinica, 2014, 50(11), 1305 (in Chinese).
王晓姣, 沈琴, 严菊杰, 等. 金属学报, 2014, 50(11), 1305.
7 Wang P, Xu F, Wang Y D, et al. Mechanics of Materials, 2024, 188, 104848.
8 Li C L, Ma Y, Hao J M, et al. Materials Science and Engineering: A, 2018, 737, 286.
9 Peng R Z, Wu X C, Chen S N, et al. Materials Science and Engineering: A, 2024, 916, 147317.
10 Yang X C, Di X J, Duan Q Y, et al. Materials Science and Engineering: A, 2023, 872, 144939.
11 Wang Z H, Niu B, Wang Q, et al. Journal of Materials Science & Technology, 2021, 93, 60.
12 Bestautte J, Oudriss A, Lenci M, et al. Corrosion Science, 2023, 224, 111509.
13 Park K, Cho B, Hong S J, et al. Materials Science and Engineering: A, 2022, 840, 142999.
14 Gao X Y, Wang H Y, Ma C N, et al. Intermetallics, 2021, 131, 107096.
15 Zeisl S, Landefeld A, Van Steenberge N, et al. Materials Science and Engineering: A, 2022, 861, 144313.
16 Du Y B, Hu X F, Zhang S Q, et al. Materials Characterization, 2022, 190, 112014.
17 Wang D, Kahn H, Ernst F, et al. Scripta Materialia, 2015, 108, 136.
18 Kim J, Hong S J, Lee J K, et al. Materials Science and Engineering: A, 2021, 823, 141763.
19 Bochenek K, Basista M. Progress in Aerospace Sciences, 2015, 79, 136.
20 Zhou B C, Liu S F, Wu H H, et al. Materials & Design, 2023, 234, 112341.
21 Schober M, Lerchbacher C, Eidenberger E, et al. Intermetallics, 2010, 18(8), 1553.
22 Han J H, Chen Y B, Wang J P, et al. The International Journal of Advanced Manufacturing Technology, 2022, 122(3), 1195.
23 Polak W Z. Computational Materials Science, 2022, 201, 110882.
24 Purja Pun G P, Mishin Y. Philosophical Magazine, 2009, 89(34-36), 3245.
25 Hangen U. D., Sauthoff G. Intermetallics, 1999, 7(3), 501.
[1] 刘国建, 孙锦滢, 曲洪漩, 徐家乐, 蒋域蓉, 沈方敏. 基于反应分子动力学的混凝土模拟孔溶液中钢筋腐蚀行为研究[J]. 材料导报, 2026, 40(2): 24120115-7.
[2] 李亚莎, 吴雕, 王福达, 周朝威, 王桂斌, 董恒. 纳米ZrO2改性聚丙烯热力学性能的分子动力学模拟[J]. 材料导报, 2026, 40(2): 25010080-7.
[3] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[4] 王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
[5] 王欣宇, 惠迎新, 徐新强, 李博文, 顾士周. 盐蚀作用对钢渣-SBS/胶粉复合改性沥青界面粘附特性的影响[J]. 材料导报, 2025, 39(23): 24060230-9.
[6] 付芳忠, 叶昊辉, 胡金, 姚明灿, 林嘉豪, 谢博毅, 范鹤林, 王瑞祥, 徐志峰. Fe/SiO2质量比对FeO-SiO2-Al2O3体系熔体黏度的影响机制[J]. 材料导报, 2025, 39(22): 24110073-6.
[7] 陈晶晶, 陈莎, 姜艳青, 占慧敏, 罗泽宇. 界面层间距对纳米结构金属Al力学性能影响的分子动力学探析[J]. 材料导报, 2025, 39(21): 24110076-11.
[8] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[9] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[10] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[11] 杨建军, 崔雅茹, 王国华, 李小明, 李锋, 陈雷, 杨树峰. PbO-FeOx-CaO-SiO2-ZnO高铅渣还原过程熔渣结构及性能的分子动力学模拟[J]. 材料导报, 2025, 39(19): 24090067-5.
[12] 高英力, 王蒴, 朱俊材, 李岳林, 田维伟, 詹明涛, 黄河. 基于分子模拟的增塑剂对沥青再生机理研究[J]. 材料导报, 2025, 39(18): 24060193-9.
[13] 于文喜, 颜建伟, 万颖芳, 程娟, 易夕剑, 雷琴, 蒋海云. 聚氯乙烯混合增塑剂分子动力学模拟[J]. 材料导报, 2025, 39(16): 24100039-7.
[14] 李亚莎, 晏欣悦, 王佳敏, 郭玉杰, 陈俊璋, 张永蘅. 离子影响油纸绝缘结合性能的分子动力学模拟研究[J]. 材料导报, 2025, 39(14): 24030082-8.
[15] 范孟娜, 陶雪飞, 宗洪祥, 丁向东. 应变玻璃统一形成判据的研究进展[J]. 材料导报, 2025, 39(11): 24060225-10.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed