Influence of Salt Corrosion on the Interfacial Adhesion Characteristics of Steel Slag-SBS/CR Modified Asphalt
WANG Xinyu1, HUI Yingxin1,2,3,*, XU Xinqiang2,3, LI Bowen1, GU Shizhou1
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China 2 Ningxia Communications Construction Co., Ltd., Yinchuan 750001, China 3 Research Institute of Transportation Technology of Ningxia Communications Construction, Yinchuan 750004, China
Abstract: To investigate the interfacial adhesion mechanism between steel slag and SBS/CR modified asphalt (SBS/CRMA) in the salt-rich environment, a molecular model of the interface between steel slag-SBS/CRMA in the dry, clear water and salt-eroded state was established by molecular dynamics simulation, and the mechanism of salt erosion on the interfacial system of steel slag-SBS/CRMA was analyzed in depth. The results show that salt ions mainly erode the surface of steel slag, in which SO42- damage the interface more significantly than Cl-. The presence of salt ions promotes the diffusion of water molecules on the surface of steel slag and triggers polarization induction, leading to a closer distribution of water molecules on the surface of steel slag to exacerbating the damage to the interfacial system. Under the effect of salt corrosion, the main interaction force between the CaCO3 and 2CaO·SiO2 components in steel slag and the asphalt changes from electrostatic force to van der Waals force. At the same time, the redistribution phenomenon of the SBS/CRMA components at the interface occurs, resulting in a decrease in the concentration of the resin and aromatics on the surface of the steel slag and prompting the diffusion of the CR along the direction away from the surface of the steel slag, thus further weakening the interfacial adhesion. However, the 3CaO·SiO2 components in the steel slag and SBS/CRMA are still bonded with electrostatic force under the action of salt corrosion. This stable and strong electrostatic effect can hinder the water molecules from pushing the asphalt away from the surface of the steel slag to a certain extent, which can effectively slow down the damage to the interfacial adhesion.
1 Wang L Y, Jiang F, Zhuang H Y, et al. Rock and Soil Mechanics, 2024, 45(S1), 53(in Chinese). 王丽艳, 蒋飞, 庄海洋, 等. 岩土力学, 2024, 45(S1), 53. 2 Xu M C, Zheng K R, Zhang Z Q, et al. Journal of Building Materials, 2024, 27(10), 955(in Chinese). 徐明超, 郑克仁, 张禛庆, 等. 建筑材料学报, 2024, 27(10), 955. 3 Huang H Y, Li Z F, Xu L J, et al. China Environmental Science, 2024(in Chinese). 黄海延, 李子锋, 徐刘杰, 等. 中国环境科学, 2024. 4 Esther L, Pedro L, Irune I, et al. Journal of Cleaner Production, 2020, 275, 123121. 5 Liu B H, Yan X Y, Ding R D, et al. Journal of Highway and Transportation Research and Development, 2023, 40(4), 16(in Chinese). 刘炳华, 闫新勇, 丁润铎, 等. 公路交通科技, 2023, 40(4), 16. 6 Liu L, Zhu X M, Liu Z H, et al. Materials Reports, 2023, 37(10), 66(in Chinese). 柳力, 朱晓明, 刘朝晖, 等. 材料导报, 2023, 37(10), 66. 7 Li H B, Feng Z X, Liu H, et al. Journal of Cleaner Production, 2022, 364, 132690. 8 Wang C H, Duan K X, Song L, et al. Journal of Cleaner Production, 2022, 359, 132003. 9 Qian C D, Fan W Y, Yang G M, et al. Construction and Building Materials, 2020, 235, 117517. 10 Long Z W, You L Y, Guo N N, et al. Construction and Building Materials, 2023, 367, 130213. 11 Jiang Q, Chen M Z, Zhao Y C, et al. Case Studies in Construction Materials, 2022, 17, e01706. 12 Tang Y J, Fu Z, Zhao P, et al. Applied Surface Science, 2024, 643, 158718. 13 Zhou Z G, Li H J, Liu X, et al. Journal of Building Materials, 2020, 23(6), 1430(in Chinese). 周志刚, 李浩嘉, 刘鑫, 等. 建筑材料学报, 2020, 23(6), 1430. 14 Zhang K, Luo Y F, Xie W, et al. Materials Today Communications, 2020, 25, 101593. 15 Zhu Y L, Ma C Y, Zhang J Z, et al. Materials Reports, 2025, 39(6), 24010156(in Chinese). 朱燕丽, 马川义, 张吉哲, 等. 材料导报, 2025, 39(6), 24010156. 16 Huang X Y, Sha A M, Jiang W, et al. Journal of Chang’an University(Natural Science Edition), 2017, 37(3), 33 (in Chinese). 黄新颜, 沙爱民, 蒋玮, 等. 长安大学学报(自然科学版), 2017, 37(3), 33. 17 Ren S S, Liu X Y, Lin P, et al. Journal of Molecular Liquids, 2022, 366, 120363. 18 Yao H, Liu J F, Xu M, et al. Advances in Colloid and Interface Science, 2022, 299, 102565. 19 Long Z W, You L Y, Xu F, et al. Journal of Colloid and Interface Science, 2022, 628, 891. 20 Zou Y X, Gao Y M, Chen A Q, et al. Applied Surface Science, 2024, 645, 158851. 21 Long Z W, Tang X Q, Ding Y H, et al. Construction and Building Materials, 2022, 336, 127471. 22 Xu G J, Wang H. Construction and Building Materials, 2016, 121, 246. 23 Li D, Greenfield M. Fuel, 2014, 115, 347. 24 Zhang L, Long N Q, Liu Y, et al. Construction and Building Materials, 2022, 332, 127401. 25 Ding Y J, Tang B M, Zhang Y Z, et al. Journal of Materials in Civil Engineering, 2015, 27(8), C4014004. 26 Sun D Q, Lin T B, Zhu X Y, et al. Computational Materials Science, 2016, 114, 86. 27 Tian Z N, Zhang Z Q, Liu H B, et al. Journal of Cleaner Production, 2022, 362, 132385. 28 Liu J Z, Yu B, Wang S Y, et al. Measurement, 2021, 177, 109224. 29 Chu L, Luo L, Fwa T. Construction and Building Materials, 2019, 225, 1. 30 Liu J Z, Yu B, Hong Q Z. Construction and Building Materials, 2020, 255, 119332. 31 Luo L, Chu L J, Fwa T. Applied Surface Science, 2020, 527, 146830. 32 Meng Y J, Lai J, Mo S Y, et al. Applied Surface Science, 2023, 639, 158171. 33 Jiao B Z, Pan B F, Liu F, et al. Construction and Building Materials, 2023, 400, 132809. 34 Luo L, Liu Y R, Oeser M, et al. Construction and Building Materials, 2023, 402, 133061.