Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24060230-9    https://doi.org/10.11896/cldb.24060230
  无机非金属及其复合材料 |
盐蚀作用对钢渣-SBS/胶粉复合改性沥青界面粘附特性的影响
王欣宇1, 惠迎新1,2,3,*, 徐新强2,3, 李博文1, 顾士周1
1 宁夏大学土木与水利工程学院,银川 750021
2 宁夏交通建设股份有限公司,银川 750001
3 宁夏交建交通科技研究院有限公司,银川 750004
Influence of Salt Corrosion on the Interfacial Adhesion Characteristics of Steel Slag-SBS/CR Modified Asphalt
WANG Xinyu1, HUI Yingxin1,2,3,*, XU Xinqiang2,3, LI Bowen1, GU Shizhou1
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
2 Ningxia Communications Construction Co., Ltd., Yinchuan 750001, China
3 Research Institute of Transportation Technology of Ningxia Communications Construction, Yinchuan 750004, China
下载:  全 文 ( PDF ) ( 32989KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究钢渣与SBS/胶粉复合改性沥青(SBS/CRMA)在富盐环境下的界面粘附机理,通过分子动力学模拟方法,建立了干燥、清水以及盐蚀状态的钢渣-SBS/CRMA界面分子模型,深入分析了盐蚀对钢渣-SBS/CRMA界面体系的作用机理。结果表明,盐离子主要对钢渣表面产生侵蚀作用,其中SO42-对界面的损伤程度较Cl-更为显著。盐离子的存在促进了水分子在钢渣表面的扩散,并引发极化诱导作用,导致水分子在钢渣表面的分布更为紧密,加剧对界面体系的损害。在盐蚀作用下,钢渣中CaCO3、2CaO·SiO2成分与沥青之间的主要作用力由静电力转为范德华力。同时,SBS/CRMA各组分在界面处发生重新分布,导致胶质和芳香分在钢渣表面的浓度降低,并促使橡胶向远离钢渣表面的方向扩散,从而进一步削弱界面粘附力。然而,钢渣中的3CaO·SiO2成分与SBS/CRMA在盐蚀作用下仍以静电力结合,这种稳定的强静电作用在一定程度上阻碍了水分子将沥青从钢渣表面推离,有效减缓了对界面粘附的损害。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王欣宇
惠迎新
徐新强
李博文
顾士周
关键词:  道路工程  钢渣  SBS/胶粉复合改性沥青  盐蚀  分子动力学  粘附性    
Abstract: To investigate the interfacial adhesion mechanism between steel slag and SBS/CR modified asphalt (SBS/CRMA) in the salt-rich environment, a molecular model of the interface between steel slag-SBS/CRMA in the dry, clear water and salt-eroded state was established by molecular dynamics simulation, and the mechanism of salt erosion on the interfacial system of steel slag-SBS/CRMA was analyzed in depth. The results show that salt ions mainly erode the surface of steel slag, in which SO42- damage the interface more significantly than Cl-. The presence of salt ions promotes the diffusion of water molecules on the surface of steel slag and triggers polarization induction, leading to a closer distribution of water molecules on the surface of steel slag to exacerbating the damage to the interfacial system. Under the effect of salt corrosion, the main interaction force between the CaCO3 and 2CaO·SiO2 components in steel slag and the asphalt changes from electrostatic force to van der Waals force. At the same time, the redistribution phenomenon of the SBS/CRMA components at the interface occurs, resulting in a decrease in the concentration of the resin and aromatics on the surface of the steel slag and prompting the diffusion of the CR along the direction away from the surface of the steel slag, thus further weakening the interfacial adhesion. However, the 3CaO·SiO2 components in the steel slag and SBS/CRMA are still bonded with electrostatic force under the action of salt corrosion. This stable and strong electrostatic effect can hinder the water molecules from pushing the asphalt away from the surface of the steel slag to a certain extent, which can effectively slow down the damage to the interfacial adhesion.
Key words:  road engineering    steel slag    SBS/CR modified asphalt    salt erosion    molecular dynamics    adhesion
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  U414  
基金资助: 宁夏自然科技基金优秀青年项目(2025AAC050029);宁夏回族自治区重点研发计划项目(2024BEG02041)
通讯作者:  *惠迎新,宁夏大学土木与水利工程学院教授、博士生导师。目前主要从事固废道路资源化综合利用、桥梁结构分析及桥梁抗震与加固等方面的研究工作。huiyx@seu.edu.cn   
作者简介:  王欣宇,宁夏大学土木与水利工程学院硕士研究生,在惠迎新教授的指导下研究沥青路面材料粘附性能、固废道路资源化综合利用等。
引用本文:    
王欣宇, 惠迎新, 徐新强, 李博文, 顾士周. 盐蚀作用对钢渣-SBS/胶粉复合改性沥青界面粘附特性的影响[J]. 材料导报, 2025, 39(23): 24060230-9.
WANG Xinyu, HUI Yingxin, XU Xinqiang, LI Bowen, GU Shizhou. Influence of Salt Corrosion on the Interfacial Adhesion Characteristics of Steel Slag-SBS/CR Modified Asphalt. Materials Reports, 2025, 39(23): 24060230-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060230  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24060230
1 Wang L Y, Jiang F, Zhuang H Y, et al. Rock and Soil Mechanics, 2024, 45(S1), 53(in Chinese).
王丽艳, 蒋飞, 庄海洋, 等. 岩土力学, 2024, 45(S1), 53.
2 Xu M C, Zheng K R, Zhang Z Q, et al. Journal of Building Materials, 2024, 27(10), 955(in Chinese).
徐明超, 郑克仁, 张禛庆, 等. 建筑材料学报, 2024, 27(10), 955.
3 Huang H Y, Li Z F, Xu L J, et al. China Environmental Science, 2024(in Chinese).
黄海延, 李子锋, 徐刘杰, 等. 中国环境科学, 2024.
4 Esther L, Pedro L, Irune I, et al. Journal of Cleaner Production, 2020, 275, 123121.
5 Liu B H, Yan X Y, Ding R D, et al. Journal of Highway and Transportation Research and Development, 2023, 40(4), 16(in Chinese).
刘炳华, 闫新勇, 丁润铎, 等. 公路交通科技, 2023, 40(4), 16.
6 Liu L, Zhu X M, Liu Z H, et al. Materials Reports, 2023, 37(10), 66(in Chinese).
柳力, 朱晓明, 刘朝晖, 等. 材料导报, 2023, 37(10), 66.
7 Li H B, Feng Z X, Liu H, et al. Journal of Cleaner Production, 2022, 364, 132690.
8 Wang C H, Duan K X, Song L, et al. Journal of Cleaner Production, 2022, 359, 132003.
9 Qian C D, Fan W Y, Yang G M, et al. Construction and Building Materials, 2020, 235, 117517.
10 Long Z W, You L Y, Guo N N, et al. Construction and Building Materials, 2023, 367, 130213.
11 Jiang Q, Chen M Z, Zhao Y C, et al. Case Studies in Construction Materials, 2022, 17, e01706.
12 Tang Y J, Fu Z, Zhao P, et al. Applied Surface Science, 2024, 643, 158718.
13 Zhou Z G, Li H J, Liu X, et al. Journal of Building Materials, 2020, 23(6), 1430(in Chinese).
周志刚, 李浩嘉, 刘鑫, 等. 建筑材料学报, 2020, 23(6), 1430.
14 Zhang K, Luo Y F, Xie W, et al. Materials Today Communications, 2020, 25, 101593.
15 Zhu Y L, Ma C Y, Zhang J Z, et al. Materials Reports, 2025, 39(6), 24010156(in Chinese).
朱燕丽, 马川义, 张吉哲, 等. 材料导报, 2025, 39(6), 24010156.
16 Huang X Y, Sha A M, Jiang W, et al. Journal of Chang’an University(Natural Science Edition), 2017, 37(3), 33 (in Chinese).
黄新颜, 沙爱民, 蒋玮, 等. 长安大学学报(自然科学版), 2017, 37(3), 33.
17 Ren S S, Liu X Y, Lin P, et al. Journal of Molecular Liquids, 2022, 366, 120363.
18 Yao H, Liu J F, Xu M, et al. Advances in Colloid and Interface Science, 2022, 299, 102565.
19 Long Z W, You L Y, Xu F, et al. Journal of Colloid and Interface Science, 2022, 628, 891.
20 Zou Y X, Gao Y M, Chen A Q, et al. Applied Surface Science, 2024, 645, 158851.
21 Long Z W, Tang X Q, Ding Y H, et al. Construction and Building Materials, 2022, 336, 127471.
22 Xu G J, Wang H. Construction and Building Materials, 2016, 121, 246.
23 Li D, Greenfield M. Fuel, 2014, 115, 347.
24 Zhang L, Long N Q, Liu Y, et al. Construction and Building Materials, 2022, 332, 127401.
25 Ding Y J, Tang B M, Zhang Y Z, et al. Journal of Materials in Civil Engineering, 2015, 27(8), C4014004.
26 Sun D Q, Lin T B, Zhu X Y, et al. Computational Materials Science, 2016, 114, 86.
27 Tian Z N, Zhang Z Q, Liu H B, et al. Journal of Cleaner Production, 2022, 362, 132385.
28 Liu J Z, Yu B, Wang S Y, et al. Measurement, 2021, 177, 109224.
29 Chu L, Luo L, Fwa T. Construction and Building Materials, 2019, 225, 1.
30 Liu J Z, Yu B, Hong Q Z. Construction and Building Materials, 2020, 255, 119332.
31 Luo L, Chu L J, Fwa T. Applied Surface Science, 2020, 527, 146830.
32 Meng Y J, Lai J, Mo S Y, et al. Applied Surface Science, 2023, 639, 158171.
33 Jiao B Z, Pan B F, Liu F, et al. Construction and Building Materials, 2023, 400, 132809.
34 Luo L, Liu Y R, Oeser M, et al. Construction and Building Materials, 2023, 402, 133061.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[3] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[4] 王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
[5] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[6] 张刘阳, 陈潇, 吕国明, 王本仁, 周明凯. 钢渣特性随粒级分布的规律研究[J]. 材料导报, 2025, 39(3): 24010040-8.
[7] 王朝辉, 马健云, 张志强, 张莹, 陈绍昌. 碎石封层用树脂基改性乳化沥青调控制备及性能[J]. 材料导报, 2025, 39(23): 24110232-8.
[8] 付芳忠, 叶昊辉, 胡金, 姚明灿, 林嘉豪, 谢博毅, 范鹤林, 王瑞祥, 徐志峰. Fe/SiO2质量比对FeO-SiO2-Al2O3体系熔体黏度的影响机制[J]. 材料导报, 2025, 39(22): 24110073-6.
[9] 刘蕾, 姚勇, 张玲玲, 唐子歆, 仇为波. 风化软岩弃渣在道路基层的应用研究[J]. 材料导报, 2025, 39(22): 25020177-9.
[10] 陈晶晶, 陈莎, 姜艳青, 占慧敏, 罗泽宇. 界面层间距对纳米结构金属Al力学性能影响的分子动力学探析[J]. 材料导报, 2025, 39(21): 24110076-11.
[11] 薛刚, 邬金月, 许胜, 刘江森, 董伟. 钢渣细骨料混凝土断裂性能研究[J]. 材料导报, 2025, 39(20): 24090190-7.
[12] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[13] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[14] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[15] 杨建军, 崔雅茹, 王国华, 李小明, 李锋, 陈雷, 杨树峰. PbO-FeOx-CaO-SiO2-ZnO高铅渣还原过程熔渣结构及性能的分子动力学模拟[J]. 材料导报, 2025, 39(19): 24090067-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed