Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24040234-6    https://doi.org/10.11896/cldb.24040234
  金属与金属基复合材料 |
低温预时效对Al-4.5Zn-1.4Mg合金组织和耐腐蚀性能的影响
王帅1,4, 罗兵辉2,*, 邢莎莎3, 袁光辉4, 谢宁4, 姜根5
1 安康学院化学与环境学院,陕西 安康 725000
2 中南大学材料科学与工程学院,长沙 410083
3 安康学院医学院,陕西 安康 725000
4 先进储能材料与电池技术未来产业创新研究院,陕西 安康 725000
5 中联重科科技发展有限公司,长沙 410083
Effect of Low Temperature Pre-ageing on Microstructure and Corrosion Resistance of Al-4.5Zn-1.4Mg Alloy
WANG Shuai1,4, LUO Binghui2,*, XING Shasha3, YUAN Guanghui4, XIE Ning4, JIANG Gen5
1 School of Chemistry and Environment, Ankang University, Ankang 725000, Shaanxi, China
2 School of Material Science and Engineering, Central South University, Changsha 410083, China
3 Medical College of Ankang University, Ankang 725000, Shaanxi, China
4 Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Ankang University, Ankang 725000, Shaanxi, China
5 Zoomlion Heavy Industry Science and Technology Development Co., Ltd., Changsha 410083, China
下载:  全 文 ( PDF ) ( 55576KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了一种新的铝合金三级时效制度(P-T74),即在T74双极时效制度之前加入一段65 ℃/96 h的低温预时效,再进行T74时效。采用金相显微镜、透射电镜和三维原子探针等手段,研究了P-T74和T74时效过程中Al-4.5Zn-1.4Mg合金耐腐蚀性能和微观组织的变化。研究结果表明,预时效能有效提高时效初期吉尼尔普雷斯顿区(GP区)的数密度,为后续η′相和η相的形成提供形核条件。相比T74时效,P-T74时效后合金晶界η相的面积分数更高、断续分布程度更大、Cu含量更高、晶界无析出带(PFZ)更窄,因此电偶腐蚀反应速率降低,腐蚀性离子单独或在应力作用下难以沿着晶界侵入并向合金内部扩展,因此合金的耐腐蚀性能得到提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王帅
罗兵辉
邢莎莎
袁光辉
谢宁
姜根
关键词:  低温预时效  Al-4.5Zn-1.4Mg合金  耐腐蚀性能  析出相演变    
Abstract: In this work, a new three-stage ageing treatment known as P-T74 for aluminum alloy was designed, that is, a low temperature pre-ageing treatment at 65 ℃/96 h was added before the T74 treatment. The corrosion properties and microstructure evolution of Al-4.5Zn-1.4Mg alloy during P-T74 and T74 ageing treatment were studied by using of optical microscope, transmission electron microscope and three-dimensional atom probe. The results show that in comparison with T74, P-T74 can effectively increase the density of Guinier Preston zones (GP zones) in the early stage, giving rise to more nucleation sites for the subsequent η′ phase and η phase. In comparison with T74 treatment, with P-T74 ageing treatment, the η phase in the grain boundaries exhibits a higher area fraction, a higher degree of intermittent distribution, a higher Cu content and a narrower precipitation free zone (PFZ). As a results, the rate of galvanic corrosion reaction decreases, the corrosive ions indepen-dently or stress synchronously are difficult to expand into the grain boundaries and the corrosion resistance of the alloy increases.
Key words:  low temperature pre-ageing    Al-4.5Zn-1.4Mg alloy    corrosion resistance    evolution of precipitation
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG146.2  
基金资助: 国家重点研发计划(2016YFB0300901);陕西省教育厅专项科研计划(22JK0234);安康学院高层次人才科研启动项目(2021AYQDZR05)
通讯作者:  *罗兵辉,中南大学教授、博士研究生导师。 主要从事先进金属结构-功能材料理论研究及材料研制开发。luobinghui@csu.edu.cn   
作者简介:  王帅,博士,安康学院化学与环境学院讲师,目前主要研究轻金属材料制备、成分调控和表征。
引用本文:    
王帅, 罗兵辉, 邢莎莎, 袁光辉, 谢宁, 姜根. 低温预时效对Al-4.5Zn-1.4Mg合金组织和耐腐蚀性能的影响[J]. 材料导报, 2025, 39(23): 24040234-6.
WANG Shuai, LUO Binghui, XING Shasha, YUAN Guanghui, XIE Ning, JIANG Gen. Effect of Low Temperature Pre-ageing on Microstructure and Corrosion Resistance of Al-4.5Zn-1.4Mg Alloy. Materials Reports, 2025, 39(23): 24040234-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040234  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24040234
1 Qin C, Gou G Q, Che X L, et al. Materials and Design, 2016, 91, 278.
2 Zhang C Z, Wang N, Lu K L, et al. Materials Today Communications, 2023, 35, 105744.
3 Wang Y C, Cao L F, Wu X D, et al. Materials Reports, 2019, 33(7), 1190 (in Chinese).
王一唱, 曹玲飞, 吴晓东, 等. 材料导报, 2019, 33(7), 1190.
4 Sun X H. Effect of alloy elements on microstructure evolution and corrosion resistance of 7xxx aluminum alloys. Master’s Thesis, Dalian University of Technology, China, 2023 (in Chinese).
武晓辉. 合金元素对7xxx系铝合金组织与腐蚀性能研究. 硕士学位论文, 大连理工大学, 2023.
5 Wang S, Luo B H, Bai Z H, et al. Vacuum, 2020, 176, 109311.
6 Li Bo, Wang X M, Chen H, et al. Journal of Alloys and Compounds, 2016, 678, 160.
7 Cao F H. Stabilizing design of nano-precipitates in 7XXX Al alloys based on interfacial control. Ph. D. Thesis, Central South University, China, 2019 (in Chinese).
曹富华. 基于界面调控的7XXX铝合金η′纳米析出相稳定化设计. 博士学位论文, 中南大学, 2019.
8 Liu Y, Li W, Jiang D, et al. Journal of Materials Research, 2015, 30(24), 3803.
9 Liu Y R, Pan Q L, Li H, et al. Journal of Alloys and Compounds, 2019, 792, 32.
10 Berg L K, Gjonnes J, Hansen V, et al. Acta Materialia, 2001, 49(17), 3443.
11 Mukhopadhyay A K. Philosophical Magazine Letters, 1994, 70(3), 135.
12 Sha G, Cerezo A. Acta Materialia, 2004, 52(15), 4503.
13 Wang S, Luo B H, Bai Z H, et al. Journal of Alloys and Compounds, 2024, 980, 173681.
14 Robinson M J. Corrosion Science, 1982, 22(8), 775.
15 Robinson M J, Jackson N C. Corrosion Science, 1999, 41(5), 1013.
16 Song R G, Dietzel W, Zhang B J, et al. Acta Materialia, 2004, 52(16), 4727.
[1] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[2] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[3] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[4] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[5] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[6] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[7] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[8] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[9] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[10] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[11] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[12] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[13] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[14] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[15] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed