Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24060193-9    https://doi.org/10.11896/cldb.24060193
  无机非金属及其复合材料 |
基于分子模拟的增塑剂对沥青再生机理研究
高英力1,2,*, 王蒴1,2, 朱俊材1,3, 李岳林1,2, 田维伟1,4, 詹明涛1,4, 黄河1
1 长沙理工大学交通运输工程学院,长沙 410114
2 湖南省碳中和道路新材料工程技术研究中心,长沙 411104
3 内蒙古自治区交通运输科学发展研究院,呼和浩特 010060
4 湖南省公路物资有限公司,长沙 410024
Study on the Regeneration Mechanism of Plasticizers on Asphalt Based on Molecular Simulation
GAO Yingli1,2,*, WANG Shuo1,2, ZHU Juncai1,3, LI Yuelin1,2, TIAN Weiwei1,4, ZHAN Mingtao1,4, HUANG He1
1 School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
2 Hunan Provincial Engineering Technology Research Center for Novel and Carbon Neutral Road Material, Changsha 410114, China
3 Inner Mongolia Autonomous Region Transportation Science Development Institute, Hohhot 010051, China
4 Hunan Highway Materials Co., Ltd., Changsha 410024, China
下载:  全 文 ( PDF ) ( 26169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究不同增塑剂对老化沥青性能恢复效果及再生机制的差异,选用己二酸二辛酯(DOA)、邻苯二甲酸二辛酯(DOP)、乙酰柠檬酸三正丁酯(ATBC)、偏苯三酸三辛酯(TOTM)四种增塑剂分别对老化沥青进行再生。评价不同增塑剂对老化沥青高低温性能的影响;分析再生过程中沥青化学结构特性;采用分子动力学模拟技术(MD)计算老化沥青再生前后电偶极矩、内聚能密度、扩散系数等参数,从分子层面对不同增塑剂的再生机制进行探讨。试验结果表明,3%的增塑剂掺量可以使老化沥青的低温性能恢复到原样沥青水平,其中DOA效果最显著,ATBC最弱;对高温性能产生负面影响,但再生后仍优于基质沥青;FTIR测试表明增塑剂与老化沥青为物理共混;MD模拟表明,增塑剂与老化沥青相容性良好,掺入后降低沥青的内聚能密度,并与沥青分子相互作用,促进沥青四组分的扩散尤其是胶质和沥青质的分散。其中DOA扩散能力强,与沥青共混后,通过削弱大分子间的相互作用,阻碍沥青质和胶质聚集来实现再生。而ATBC与老化沥青相容性相对较差,分子迁移率低,较小的电偶极矩难以影响沥青分子间的范德华力,以补充轻质组分为主,再生效果较弱。TOTM和DOP的再生效果介于两者之间。为增塑剂在沥青再生方面的应用提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高英力
王蒴
朱俊材
李岳林
田维伟
詹明涛
黄河
关键词:  增塑剂  老化沥青  再生机理  分子动力学    
Abstract: To investigate the difference of the recovery effect and regeneration mechanism of different plasticizers on aging asphalt, four plasticizers, dioctyl adipate (DOA), dioctyl phthalate (DOP), acetyl tributyl citrate (ATBC) and trioctyl trimellitate (TOTM), were used to regenerate aged asphalt. The effects of different plasticizers on the high and low temperature performance of aged asphalt were evaluated. The chemical structure characteristics of asphalt in the regeneration process were analyzed. Molecular dynamics simulation (MD) was used to calculate the electric dipole moment, cohesive energy density and diffusion coefficient of aged asphalt before and after regeneration, and the regeneration mechanism of different plasticizers was discussed from the molecular level. The test results show that 3% plasticizer content can restore the low-temperature performance of aged asphalt to the level oforiginal asphalt, among which DOA has the most significant effect and ATBC has the weakest effect. It has a negative impact on its high-temperature performance, but it is still better than the original asphalt after regeneration. FTIR test showed that plasticizer and aged asphalt were physically blended. MD simulation shows that the plasticizer has good compatibility with aged asphalt. The addition of plasticizer reduces the cohesive energy density of asphalt and interacts with asphalt molecules to promote the diffusion of four components of asphalt, especially the dispersion of resin and asphaltene. Among them, DOA has a strong diffusion ability. After blending with asphalt, it can achieve regeneration by weakening the interaction between macromolecules and hindering the aggregation of asphaltenes and resins. However, ATBC has relatively poor compatibility with aged asphalt, low molecular mobility, and small electric dipole moment, which is difficult to affect the van der Waals force between asphalt molecules, and the light component is mainly added, resulting in weak regeneration effect. The regeneration effect of TOTM and DOP is between the two. It provides a theoretical basis for the application of plasticizer in asphalt regeneration.
Key words:  plasticizer    aged asphalt    regeneration mechanism    molecular dynamics
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  U414  
基金资助: 国家自然科学基金(52278239;52308234;52209154);湖南省科技厅重点研发项目(2022JJ30042;2023JJ30040);湖南省自然资源厅科研基金(2022G07)
通讯作者:  *高英力,博士研究生导师。目前主要从事工业固体废弃物综合利用、道路结构新材料的研发及应用等方面的研究工作。yingligao509@126.com   
引用本文:    
高英力, 王蒴, 朱俊材, 李岳林, 田维伟, 詹明涛, 黄河. 基于分子模拟的增塑剂对沥青再生机理研究[J]. 材料导报, 2025, 39(18): 24060193-9.
GAO Yingli, WANG Shuo, ZHU Juncai, LI Yuelin, TIAN Weiwei, ZHAN Mingtao, HUANG He. Study on the Regeneration Mechanism of Plasticizers on Asphalt Based on Molecular Simulation. Materials Reports, 2025, 39(18): 24060193-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060193  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24060193
1 Joni H H, Al-Rubaee R H A, Al-zerkani M A. Case Studies in Construction Materials, 2019, 11, e00279.
2 Xiao FP, Xu L, Zhao Z F, et al. Sustainable Materials and Technologies, 2023, 37, e00697.
3 Nazzal M D, Mogawer W, Austerman A, et al. Construction and Building Materials, 2015, 101, 50.
4 Zhu H R, Xu G, Gong M H, et al. Construction and Building Materials, 2017, 147, 117.
5 Zhang X T, Chen M Z, Zhao Y H, et al. Construction and Building Materials, 2022, 361, 129522.
6 Shao Y, Qiao D, Chen X Q, et al. Construction and Building Materials, 2022, 350, 128853.
7 Liu Z M, Li S, Wang Y D. Journal of Cleaner Production, 2022, 330, 129844.
8 Li B, Han J, Nan X L, Li X L, et al. Case Studies in Construction Materials, 2023(18), e01853.
9 Fu Z, Shi K, Ma F, Song R M, et al. International Journal of pavement engineering, 2022, 23(8), 2644.
10 Fu Z, Shen W Q, Kong Z F, et al. Journal of Zhengzhou University (Engineering Science), 2017, 38(3), 15.
11 Ji J, Yuan Z K, Wei J M, et al. Journal of China University of Petroleum (Natural Science Edition), 2019, 43(4), 166.
12 Zhang F, Hu C B. Journal of Thermal Analysis and Calorimetry, 2015, 121, 651.
13 Song R M, Sha A M, Shi K, et al. Construction and Building Materials, 2021(309), 125158.
14 He Z Y, Jiang B, Tan Y W, et al. Applied chemical industry, 2022, 51(1), 39 (in Chinese).
何兆益, 蒋斌, 谭洋伟等. 应用化工, 2022, 51(1), 39.
15 Ma F, Hou R H, Fu Z, et al. Highway, 2018, 63(9), 237 (in Chinese).
马峰, 侯仁辉, 傅珍. 公路, 2018, 63(9), 237.
16 Li C, Ma F, Fu Z, et al. Construction and Building Materials, 2022(318), 126039.
17 Wang F C. Science Technology and Engineering, 2022, 22(5), 2002 (in Chinese).
王枫成. 科学技术与工程, 2022, 22(5), 2002.
18 Ma S K, Zhang H T, Gu YC, et al. Case Studies in Construction Materials, 2023, 18, e02031.
19 Du B, Li R, Guo F C, et al. Journal of Materials in Civil Engineering, 2023, 35(12), 04023461.
20 Wang Q M, Ye Q S, Luo J H, et al. Materials, 2022, 15, 3197.
21 Zhang X F, Zhu J C, Wu C F, et al. Materials, 2020, 13, 1123.
22 Sun C J, Li H Y, Wang F, et al. Hans Journal of Civil Engineering, 2019, 8(7), 1153.
23 Cao W. Materials & Design, 2023, 226, 111677.
24 Cao W, Li X Y. Polymers, 2022, 14, 4624.
25 Rajib A I, Samieadel A, Zalghout A, et al. Road Materials and Pavement Design, 2022, 23(2), 358.
26 Du J G, Jin Y Y, Hou S G, et al. Case Studies in Construction Materials, 2023, 18, e02007.
27 Ding H Y, Wang H N, Qu X, et al. Journal of Cleaner Production, 2021, 299, 126927.
28 Bao C H, Zheng C F, Xu Y, et al. Journal of Cleaner Production, 2023, 405, 136970.
29 Yan S A, Zhou C J, Zhang J, et al. Journal of Traffic and Transportation Engineering (English Edition), 2022, (9)5, 795.
30 Chen Z X, Pei J Z, Li R, et al. Construction and Building Materials, 2018, 189, 695.
31 Behnood A, Olek J. Construction and Building Materials, 2017, 151, 464.
32 Liang P, Liang M, Fan W Y, et al. Construction and Building Materials, 2017, 139, 183.
33 Derek D. L, Michael L. Greenfield. Fuel, 2014, 115, 347.
34 Wang L, Zhang Q, Feng L. Journal of Building Materials, 2020, 23(6), 1458(in Chinese).
王岚, 张琪, 冯蕾. 建筑材料学报, 2020, 23(6), 1458.
35 Yao H, Dai Q L, You Z p. Construction and Building Materials, 2015, 101, 1078.
36 Wang J J. Theoretical Investigation on the Action Mechanism of Warm Mix Asphalt based on Molecular Dynamics Simulation. Master's Thesis, Shandong Jianzhu University, China, 2024 (in Chinese).
王俊捷. 基于分子模拟的温拌沥青机理研究. 硕士学位论文,山东建筑大学, 2024.
37 Li G N, Tan Y Q. Fuel, 2022,308, 122037.
38 Wang J Q, Li Q, Lu Y, et al. Construction and Building Materials, 2022, 343, 128043.
39 Yu R E, Wang Q, Wang W, et al. Materials & Design, 2021, 209, 109994.
40 Tang Y J, Fu Z, Ma F, et al. International Journal of Pavement Engineering, 2023, 24(1), 2211212.
41 Ren S S, Liu X Y, Lin P, et al. Fuel, 2022, 324, 124550.
42 Zhan Y Q, Wu H, Song W M, et al. Coatings, 2022, 12, 403.
43 Chen S Q, Yang Q, Qiu X, et al. Buildings, 2023, 13, 862.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
[3] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[4] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[5] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[6] 于文喜, 颜建伟, 万颖芳, 程娟, 易夕剑, 雷琴, 蒋海云. 聚氯乙烯混合增塑剂分子动力学模拟[J]. 材料导报, 2025, 39(16): 24100039-7.
[7] 李亚莎, 晏欣悦, 王佳敏, 郭玉杰, 陈俊璋, 张永蘅. 离子影响油纸绝缘结合性能的分子动力学模拟研究[J]. 材料导报, 2025, 39(14): 24030082-8.
[8] 范孟娜, 陶雪飞, 宗洪祥, 丁向东. 应变玻璃统一形成判据的研究进展[J]. 材料导报, 2025, 39(11): 24060225-10.
[9] 耿瑞文, 周星辰, 田助新, 谢启明, 李立军, 吴海华, 双佳俊, 杨志豇. 6H-SiC纳米磨削机理的分子动力学研究[J]. 材料导报, 2025, 39(10): 24080001-8.
[10] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[11] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[12] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[13] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[14] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[15] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed