Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120115-7    https://doi.org/10.11896/cldb.24120115
  金属与金属基复合材料 |
基于反应分子动力学的混凝土模拟孔溶液中钢筋腐蚀行为研究
刘国建*, 孙锦滢, 曲洪漩, 徐家乐, 蒋域蓉, 沈方敏*
苏州科技大学土木工程学院,江苏 苏州 215011
Study on Steel Corrosion in Simulated Concrete Pore Solution Based on Reactive Molecular Dynamics
LIU Guojian*, SUN Jinying, QU Hongxuan, XU Jiale, JIANG Yurong, SHEN Fangmin*
School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China
下载:  全 文 ( PDF ) ( 19887KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对氯离子诱导钢筋腐蚀这一制约重大基础设施耐久性的关键共性问题,传统研究受限于原子尺度动态表征手段的匮乏,难以揭示界面反应机理与环境因素的定量关联。通过反应分子动力学(ReaxFF-MD)模拟研究了氯离子环境下外加电场、温度和离子浓度对钢筋腐蚀行为特性的影响。模拟研究结果表明:电场对钢筋的腐蚀行为具有促进作用,氧化膜生成厚度和原子溶解数与电场强度呈正相关。温度提升增大了氯离子的扩散速率和化学活性,从而抑制了Fe基表面的氧化反应和加速了铁原子的溶解腐蚀过程。随着氯离子浓度的增加,其催化腐蚀效率变强,表现为系统中径向分布函数(RDF)Fe-O成键峰值升高,对应的Fe原子溶解数量提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘国建
孙锦滢
曲洪漩
徐家乐
蒋域蓉
沈方敏
关键词:  反应分子动力学  钢筋腐蚀  外加电场  温度  氯离子    
Abstract: Aiming at the critical common issue of chloride-induced reinforcement corrosion that constrains the durability of major infrastructures, traditional research has been limited by the lack of dynamic characterization techniques at the atomic scale, making it difficult to reveal the quantitative relationship between interfacial reaction mechanisms and environmental factors. This work investigates the effects of applied electric fields, temperature, and ion concentration on the corrosion behavior characteristics of steel reinforcement in chloride environments through reactive molecular dynamics (ReaxFF-MD) simulations. The simulation results indicate that the electric field promotes the corrosion behavior of steel reinforcement, with the thickness of the oxide film and the number of dissolved atoms positively correlated with the electric field strength. An increase in temperature accelerates the diffusion rate and chemical activity of chloride ions, thereby inhibiting the oxidation reaction on the Fe-based surface and accelerating the dissolution corrosion process of iron atoms. As the concentration of chloride ions increases, their catalytic corrosion efficiency strengthens, manifested by the rise in the radial distribution function (RDF) Fe-O bonding peak in the system, corresponding to an increase in the number of dissolved Fe atoms.
Key words:  ReaxFF-MD    steel corrosion    external electric field    temperature    chloride
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52008284)
通讯作者:  *刘国建,博士,苏州科技大学土木工程学院副教授、硕士研究生导师。主要研究方向为严酷环境下钢筋腐蚀行为与机理、结构混凝土耐久性、水泥基材料微结构表征等。liuguojian@usts.edu.com;
沈方敏,硕士,主要从事钢筋腐蚀反应分子动力学研究。sfm15952654497@163.com   
引用本文:    
刘国建, 孙锦滢, 曲洪漩, 徐家乐, 蒋域蓉, 沈方敏. 基于反应分子动力学的混凝土模拟孔溶液中钢筋腐蚀行为研究[J]. 材料导报, 2026, 40(2): 24120115-7.
LIU Guojian, SUN Jinying, QU Hongxuan, XU Jiale, JIANG Yurong, SHEN Fangmin. Study on Steel Corrosion in Simulated Concrete Pore Solution Based on Reactive Molecular Dynamics. Materials Reports, 2026, 40(2): 24120115-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120115  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120115
1 Hou B R, Li X G, Ma X M, et al.npj Materials Degradation, 2017, 1, 29.
2 Thompson N G, Yunovich M, Dunmire D. Corrosion Reviews, 2007, 25(3-4), 247.
3 Hansson C M. Metallurgical and Materials Transactions A, 2011, 42, 2952.
4 Liu G J, Zhang Y S, Liu C, et al, Materials Reports, 2021, 35(14), 14072(in Chinese).
刘国建, 张云升, 刘诚, 等. 材料导报, 2021, 35(14), 14072.
5 Galan I, Glasser F P. Advances in Cement Research, 2015, 27(2), 63.
6 Angst U M, Geiker M R, Michel A, et al. Materials and Structures, 2017, 50, 143.
7 Liu G J, Zhu H, Zhang Y S, et al. Journal of the Chinese Ceramic Society, 2022, 50(2), 413 (in Chinese).
刘国建, 朱航, 张云升, 等. 硅酸盐学报, 2022, 50(2), 413.
8 Wang Y, Shi Y X, Wei B M, et al. Journal of Chinese Society for Corrosion and Protection, 1998(2), 29 (in Chinese).
汪鹰, 史苑芗, 魏宝明, 等. 中国腐蚀与防护学报, 1998(2), 29.
9 Ghods P, Isgor O B, Bensebaa F, et al. Corrosion Science, 2012, 58, 159.
10 Shintani D, Ishida T, Izumi H, et al. Corrosion Science, 2008, 50(10), 2840.
11 Wang L T, Mercier D, Zanna S, et al. Corrosion Science, 2020, 167, 108507.
12 Han Y, Jiang D D, Zhang J L, et al. Frontiers of Chemical Science and Engineering, 2016, 10, 16.
13 Dor Mohammadi H, Pang Q, Murkute P, et al. Corrosion Science, 2019, 157, 31.
14 Farzi N, Hydarifard M H, Izadi M E, et al. Journal of Molecular Li-quids, 2020, 318, 114006.
15 Farzi N, Hydarifar M H, Izadi M E. Materials Chemistry and Physics, 2022, 283, 125984.
16 Hou D S, Zhang K X, Hong F, et al. Applied Surface Science, 2022, 582, 52408.
17 Assowe O, Politano O, Vignal V, et al. The Journal of Physical Chemistry A, 2012, 116(48), 11796.
18 DorMohammadi H, Pang Q, Árnadóttir L, et al. Computational Materials Science, 2018, 145, 126.
19 Zhou J J, Yang Y, Yu Y S. Computational Materials Science, 2022, 212, 111577.
20 Yang Y, Zhou J J, Yu Y S. Journal of CO2 Utilization, 2022, 63, 102119.
21 van Duin A C T, Dasgupta S, Lorant F, et al. Journal of Physical Che-mistry A, 2001, 105 (41), 9396.
22 van Duin A C T, Strachan A, Stewman S, et al. Journal of Physical Che-mistry A, 2003, 107(19), 3803.
23 Shen F M, Liu G J, Liu C, et al. Journal of Materials Research and Technology, 2024, 29, 1305.
24 Thompson A P, Aktulga H M, Berger R, et al. Computer Physics Communications, 2022, 271, 10817.
25 Schmickler W. Journal of Solid State Electrochemistry, 2020, 24, 2175.
[1] 陆珊珊, 刘坤, 李树康, 方珍文. 无纺布复合膜及内容物对医用热敷贴发热性能的影响机制[J]. 材料导报, 2026, 40(2): 24110079-8.
[2] 牛舒楠, 郑丽君, 高艺萌, 曲佳音, 王继福, 王鹏. 以碳化硅为发泡剂的铁尾矿多孔陶瓷的制备及性能研究[J]. 材料导报, 2026, 40(2): 24120220-7.
[3] 宋百姓, 史才军, 柯国军. 粉煤灰和矿粉对加速碳化养护砂浆中钢筋锈蚀的影响[J]. 材料导报, 2026, 40(1): 24120062-7.
[4] 张昌青, 刘恩荣, 王栋, 王亚雄, 石消飞, 王一帆, 张鹏省. 搅拌摩擦封焊过程扭矩和温度场变化规律研究[J]. 材料导报, 2026, 40(1): 24120074-5.
[5] 郭幼丹, 程晓农. SAF2507双相不锈钢二次急冷淬火成形析出相的析出行为[J]. 材料导报, 2025, 39(9): 23100100-7.
[6] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[7] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[8] 蒋力, 唐昭敏, 赵健清, 李世杰, 李昊宇, 杨怡宁, 潘皛, 王新茗. 原位可注射pH/温度双响应载药水凝胶的制备及抗肿瘤应用[J]. 材料导报, 2025, 39(6): 24010129-7.
[9] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[10] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[11] 林海孟, 温勇, 郭晓琦, 孙晓燕, 田沛丰. 不同pH值下制备烟酸根型水滑石的表征及氯离子吸附性能分析[J]. 材料导报, 2025, 39(23): 24100141-7.
[12] 罗健涵, 田晓东, 王苗明月. 振荡频率对TC4合金激光氮化组织形貌的影响及其数值模拟[J]. 材料导报, 2025, 39(23): 24110162-7.
[13] 宋春生, 徐龙, 李泓燊, 江友亮, 罗怡杭. 碳纤维复合材料固化过程的非均匀温度场重构技术研究[J]. 材料导报, 2025, 39(23): 24100070-8.
[14] 田壮, 肖官衍, 夏晋, 金伟良. 基于通用有效介质理论的双尺度水泥浆体氯离子扩散系数模型[J]. 材料导报, 2025, 39(22): 24110133-7.
[15] 王远达, 张鸿儒, 李从正, 樊静宜, 林旭健. 水流作用下碱激发矿渣砂浆的氯离子传输规律[J]. 材料导报, 2025, 39(21): 24100161-7.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed