Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120223-7    https://doi.org/10.11896/cldb.24120223
  金属与金属基复合材料 |
过渡族金属微量添加对Fe基块状金属玻璃的玻璃形成能力、力学性能和耐腐蚀性的影响
宋海鹏1, 张冠1,2,3,*, 范雪茹4, 黄勇2,5, 谢磊4, 赵冬梅1, 李强4, 任铁真3,*
1 新疆大学智能制造现代产业学院(机械工程学院),乌鲁木齐 830017
2 新疆工程学院新疆煤矿机电工程技术研究中心,乌鲁木齐 830023
3 新疆大学化工学院,乌鲁木齐 830017
4 新疆大学物理科学与技术学院,乌鲁木齐 830017
5 新疆工程学院机电工程学院,乌鲁木齐 830023
Effects of Transition Metal Minor Additions on Glass-forming Ability,Mechanical Properties,and Corrosion Resistance of Fe-based Bulk Metallic Glasses
SONG Haipeng1, ZHANG Guan1,2,3,*, FAN Xueru4, HUANG Yong2,5, XIE Lei4, ZHAO Dongmei1, LI Qiang4, REN Tiezhen3,*
1 College of Intelligent Manufacturing Modern Industry (College of Mechanical Engineering), Xinjiang University, Urumqi 830017, China
2 Xinjiang Coal Mine Electromechanical Engineering Technology Research Center, Xinjiang Institute of Engineering, Urumqi 830023, China
3 School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
4 School of Physics Science and Technology, Xinjiang University, Urumqi 830017, China
5 College of Mechanical and Electrical Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
下载:  全 文 ( PDF ) ( 33441KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Fe基块状非晶合金(BMGs)因其优异硬度、耐磨性和耐腐蚀性能,在各种工程应用中具有巨大的潜力。微量添加的方法可以有效地改善合金的性能,但关于微量添加过渡族金属对Fe基BMGs性能影响的研究较少。基于此,本研究探讨了微量添加过渡族金属对Fe43Co7Cr15Mo12C15B6M2 (M=Mo、Hf、Mn、Zr、Nb、Ta、W、V、Ti; 原子分数,%) BMGs的玻璃化形成能力(GFA)、热稳定性、力学性能和耐腐蚀性的影响。结果表明,只有添加Mo、Hf、Mn和Zr的BMGs才能表现出更好的GFA,临界直径超过1.5 mm。这四种BMGs的抗压强度为4.5~4.8 GPa,维氏硬度为1 208HV0.3~1 323HV0.3。其中,添加了Zr的Fe基BMGs具有优异的耐腐蚀性,这是由于亲氧离子Zr4+与氧离子反应形成了耐腐蚀的ZrO2。此外,Zr的存在还促进Cr3+和Fe2+等离子的生成,从而形成稳定、致密的钝化膜,显著提高了Fe基BMGs的耐腐蚀性。这些发现为设计和优化具有更好的GFA和耐腐蚀性能的Fe基BMGs提供了宝贵的启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋海鹏
张冠
范雪茹
黄勇
谢磊
赵冬梅
李强
任铁真
关键词:  Fe基块状非晶合金  过渡族金属  微量添加  玻璃化形成能力  耐腐蚀性    
Abstract: Fe-based amorphous alloys (BMGs) have great potential for a variety of engineering applications due to their excellent hardness, wear and corrosion resistance. The method of micro addition can effectively improve the properties of alloys, but there are fewer studies on the effect of micro addition of transition group metals on the properties of Fe-based BMGs. Based on this, this study investigated the effects of micro additions of transition group metals on the glass-forming ability (GFA), thermal stability, mechanical properties, and corrosion resistance of Fe43Co7Cr15Mo12C15B6M2 (M=Mo, Hf, Mn, Zr, Nb, Ta, W, V, and Ti; in at.%) BMGs. The results show that only BMGs with the addition of Mo, Hf, Mn and Zr have a better GFA with a critical diameter greater than 1.5 mm. These four BMGs demonstrate excellent compressive strengths ranging from 4.5 GPa to 4.8 GPa and Vickers hardness between 1 208HV0.3 and 1 323HV0.3. Among them, the Fe-based BMGs with Zr addition exhibits superior corrosion resistance, attributed to the formation of corrosion-resistant ZrO2 through reactions between oxyphilic ions Zr4+ and oxygen ions. Furthermore, the presence of Zr enhances the generation of Cr3+ and Fe2+ ions, leading to the formation of a thicker and denser passivation film, which significantly improves corrosion resistance of the Fe-based BMGs. These findings provide valuable insights into the design and optimization of Fe-based BMGs with enhanced GFA and corrosion resistance.
Key words:  Fe-based bulk metallic glasses    transition group metals    micro addition    glass-forming ability    corrosion resistance
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TG174.2  
基金资助: 自治区高校基本科研业务费(XJEDU2023P14);自治区科技计划重点研发项目(2022B01036-1);自治区重大科技项目(ZYYD2023B03);丝绸之路经济带创新驱动发展试验区、乌昌石国家自主创新示范区科技发展计划项目(2022LQ01006)
通讯作者:  *张冠,博士,新疆大学智能制造现代产业学院(机械工程学院)硕士研究生导师,新疆工程学院机电工程学院副教授。目前主要从事增材制造3D打印、防腐防污涂层设计与制备、耐磨耐蚀涂层设计与制备等方面的研究。gzhang89@163.com;
任铁真,博士,新疆大学化工学院教授、博士研究生导师。目前主要从事多尺度等级孔无机材料的制备与功能化等方面的研究。rtz@xju.edu.cn   
作者简介:  宋海鹏,新疆大学智能制造现代产业学院(机械工程学院)硕士研究生,在张冠副教授的指导下开展非晶合金的研究。
引用本文:    
宋海鹏, 张冠, 范雪茹, 黄勇, 谢磊, 赵冬梅, 李强, 任铁真. 过渡族金属微量添加对Fe基块状金属玻璃的玻璃形成能力、力学性能和耐腐蚀性的影响[J]. 材料导报, 2026, 40(2): 24120223-7.
SONG Haipeng, ZHANG Guan, FAN Xueru, HUANG Yong, XIE Lei, ZHAO Dongmei, LI Qiang, REN Tiezhen. Effects of Transition Metal Minor Additions on Glass-forming Ability,Mechanical Properties,and Corrosion Resistance of Fe-based Bulk Metallic Glasses. Materials Reports, 2026, 40(2): 24120223-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120223  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120223
1 Ying H Q, Liu S N, Wu Z D, et al. Rare Metals, 2022, 41(6), 2021.
2 Tan C, Zhu H, Kuang T, et al. Journal of Alloys and Compounds, 2017, 690, 108.
3 Yue T M, Su Y P, Yang H O. Materials Letters, 2007, 61(1), 209.
4 Shu F, Tian Z, Zhao H, et al. Materials Letters, 2016, 176, 306.
5 Wang H Q, Kang J J, Wang H D, et al. Journal of Materials Engineering, 2025, 53(2), 1 (in Chinese)
王贺千, 康嘉杰, 王浩东, 等. 材料工程, 2025, 53(2), 1.
6 Madinehei M, Bruna P, Duarte M J, et al. Journal of Alloys and Compounds, 2014, 615, S128.
7 Wang Y, Zheng Y G, Ke W, et al. Corrosion Science, 2011, 53(10), 3177.
8 Li C Q, Huang Z H, Xu C J, et al. Materials Reports, 2018, 32(S2), 163 (in Chinese)
李翠芹, 黄正华, 徐春杰, 等. 材料导报, 2018, 32(S2), 163.
9 Suryanarayana C, Inoue A. International Materials Reviews, 2013, 58(3), 131.
10 Donald I W, Davies H A. Journal of Non-Crystalline Solids, 1978, 30(1), 77.
11 Greer A L. Nature, 1993, 366(6453), 303.
12 Geng Y, Wang Y. Acta Metallurgica Sinica, 2020, 56(11), 1558.
13 Wang W. Progress in Materials Science, 2007, 52(4), 540.
14 Zhai F, Pineda E, Duarte M J, et al. Journal of Alloys and Compounds, 2014, 604, 157.
15 Wang R. Nature, 1979, 278(5706), 700.
16 Kim D H, Lee E, Pak C. Catalysis Today, 2021, 359, 106.
17 Shen B, Akiba M, Inoue A. Physical Review B, 2006, 73(10), 104204.
18 Zhai F, Pineda E, Duarte M J, et al. Journal of Alloys and Compounds, 2014, 604, 157.
19 Ponnambalam V, Poon S J, Shiflet G J, et al. Applied Physics Letters, 2003, 83(6), 1131.
20 Gebert A, Eckert J, Schultz L. Acta Materialia, 1998, 46(15), 5475.
21 Shan X, Ha H, Payer J H. Metallurgical and Materials Transactions A, 2009, 40(6), 1324.
22 Han Z, Yang G, Yang J, et al. Materials Characterization, 2023, 204, 113247.
23 Li J, Yang L, Ma H, et al. Materials & Design, 2016, 95, 225.
24 Wang S L, Li H X, Zhang X F, et al. Materials Chemistry and Physics, 2009, 113(2-3), 878.
25 Guo S, Hu Q, Ng C, et al. Intermetallics, 2013, 41, 96.
26 Inoue A. Acta Materialia, 2000, 48(1), 279.
27 Song G, Atrens A, John D S, et al. Corrosion Science, 1997, 39(10-11), 1981.
28 Lamaka S V, Shchukin D G, Andreeva D V, et al. Advanced Functional Materials, 2008, 18(20), 3137.
29 Song G L, Unocic K A. Corrosion Science, 2015, 98, 758.
30 Jorcin J B, Orazem M E, Pébère N, et al. Electrochimica Acta, 2006, 51(8-9), 1473.
31 Song Q T, Xu J. Corrosion Science, 2020, 167, 108513.
32 Wang W, Mohammadi F, Alfantazi A. Corrosion Science, 2012, 57, 11.
33 Chen W Y, Chen Y H, Li W P, et al. Applied Surface Science, 2022, 576, 151824.
34 Rodriguez A A, Tylczak J H, Gao M C, et al. Advances in Materials Science and Engineering, 2018, 2018, 1.
35 Bower K, Murray S, Reinhart A, et al. Results in Materials, 2020, 8, 100122.
36 Qiu C L, Huang L, Lu X Y, et al. Rare Metal Materials and Engineering, 2013, 42(5), 975 (in Chinese)
邱春龙, 黄璐, 卢旭阳, 等. 稀有金属材料与工程, 2013, 42(5), 975.
37 Kennedy E, Sachin B S, Ramachandra M, et al. Materials Today: Proceedings, 2021, 39, 1710.
38 Yeh T K, Wu P I, Tsai C H. Progress in Nuclear Energy, 2012, 57, 62.
39 Wang Z M, Ma Y T, Zhang J, et al. Electrochimica Acta, 2008, 54(2), 261.
[1] 钟海霞, 钟庆东, 杨健, 章书剑, 王雪妹, 范佳宝. AlCl3-EMIC离子液体电沉积Al-Ti合金及耐蚀性研究[J]. 材料导报, 2026, 40(2): 24100244-7.
[2] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[3] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[4] 王帅, 罗兵辉, 邢莎莎, 袁光辉, 谢宁, 姜根. 低温预时效对Al-4.5Zn-1.4Mg合金组织和耐腐蚀性能的影响[J]. 材料导报, 2025, 39(23): 24040234-6.
[5] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[6] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[7] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[8] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[9] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[10] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[11] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[12] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[13] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[14] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[15] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed