Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25010040-9    https://doi.org/10.11896/cldb.25010040
  无机非金属及其复合材料 |
MXene基复合材料在航空领域应用的研究进展
王士军*, 杨明, 王雯嘉
中国航空制造技术研究院复合材料技术中心,北京 101300
Application of MXene-based Composites in Aviation Field
WANG Shijun*, YANG Ming, WANG Wenjia
AVIC MTI Composite Technology Center, Beijing 101300, China
下载:  全 文 ( PDF ) ( 44523KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种新兴的二维纳米材料,MXene凭借其独特的理化特性,如高导电性、大比表面积、优异的亲水性和活性表面等,近年来被逐步应用于航空领域。本文首先介绍了MXene的主要制备方法,如氢氟酸刻蚀法、原位生成氢氟酸刻蚀法、熔融盐刻蚀法、电化学刻蚀法、碱刻蚀法等。其次,总结分析了MXene及其复合材料在航空领域用作电磁屏蔽材料、吸波材料、防/除冰材料、防雷击材料和传感材料等方面的研究成果。最后,对MXene在航空领域未来的发展方向和面临的主要挑战进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王士军
杨明
王雯嘉
关键词:  MXene  航空材料  纳米材料  制备方法    
Abstract: As a new class of two-dimensional nanomaterials, MXene has been gradually applied to the aviation field in recent years due to its unique physical and chemical properties, such as high electrical conductivity, large specific surface area, excellent hydrophilicity and active surface. This paper introduces the preparation methods of MXene, such as hydrofluoric acid etching, in-situ hydrofluoric acid etching, molten salt etching, electrochemical etching, alkali etching. The research results of MXene and its composites used as electromagnetic interference shielding mate-rials, microwave absorption materials, anti-icing materials, lightning strike protection materials, and sensing materials in aviation field are summarized and analyzed. The development direction and main challenges of MXene in the aviation field are also prospected.
Key words:  MXene    aviation material    nanomaterial    preparation method
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TB34  
基金资助: 中国航空制造技术研究院基金(KS9123FP111)
通讯作者:  * 王士军,博士,中国航空制造技术研究院复合材料技术中心高级工程师。目前主要从事结构-功能一体化复合材料方面的研究工作。wangshijun36@163.com   
引用本文:    
王士军, 杨明, 王雯嘉. MXene基复合材料在航空领域应用的研究进展[J]. 材料导报, 2026, 40(1): 25010040-9.
WANG Shijun, YANG Ming, WANG Wenjia. Application of MXene-based Composites in Aviation Field. Materials Reports, 2026, 40(1): 25010040-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010040  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25010040
1 Kang J, Yang X, Hu Q, et al. Chemical Reviews, 2023, 123(13), 8859.
2 Baig N. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107362.
3 Liu S, Chevali V S, Xu Z, et al. Composites Part B: Engineering, 2018, 136, 197.
4 Zhang H. ACS Nano, 2015, 9(10), 9451.
5 Wang Y, Wang L, Zhang X, et al. Nano Today, 2021, 37, 101059.
6 Chen Y, Fan Z, Zhang Z, et al. Chemical Reviews, 2018, 118(13), 6409.
7 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
8 Wang S J, Li D S, Jiang L. Advanced Materials Interfaces, 2019, 6(19), 1900961.
9 Han M, Shuck C E, Rakhmanov R, et al. ACS Nano, 2020, 14(4), 5008.
10 Gogotsi Y, Anasori B. ACS Nano, 2019, 13(8), 8491.
11 Zhu K, Jin Y, Du F, et al. Dalton Transactions, 2019, 31, 11.
12 Tran M H, Schäfer T, Shahraei A, et al. ACS Applied Energy Materials, 2018, 1(8), 3908.
13 Zhao S, Meng X, Zhu K, et al. Energy Storage Materials, 2017, 8, 42.
14 Mashtalir O, Naguib M, Mochalin V N, et al. Nature Communications, 2013, 4, 1716.
15 Lin H, Gao S, Dai C, et al. Journal of the American Chemical Society, 2017, 139(45), 16235.
16 Naguib M, Unocic R R, Armstrong B L, et al. Dalton Transactions, 2015, 44(20), 9353.
17 Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Advanced Materials, 2015, 27(23), 3501.
18 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature, 2014, 516(7529), 78.
19 Halim J, Kota S, Lukatskaya M R, et al. Advanced Functional Materials, 2016, 26(18), 3118.
20 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale, 2016, 8(22), 11385.
21 Li M, Lu J, Luo K, et al. Journal of the American Chemical Society, 2019, 141(11), 4730.
22 Li Y, Shao H, Lin Z, et al. Nature Materials, 2020, 19(8), 894.
23 Yang S, Zhang P, Wang F, et al. Angewandte Chemie International Edition, 2018, 57(47), 15491.
24 Li T, Yao L, Liu Q, et al. Angewandte Chemie International Edition, 2018, 57(21), 6115.
25 Xu C, Wang L, Liu Z, et al. Nature Materials, 2015, 14(11), 1135.
26 Wang D, Zhou C, Filatov A S, et al. Science, 2023, 379(6638), 1242.
27 Anand S, Vu M C, Mani D, et al. Advanced Composites and Hybrid Materials, 2024, 7(1), 33.
28 Zhao Y, Miao B, Nawaz M A, et al. Advanced Composites and Hybrid Materials, 2024, 7(2), 34.
29 Guo Z, Zhao Y, Luo P, et al. Chemical Engineering Journal, 2024, 485, 149691.
30 Li P, Wang H, Ju Z, et al. ACS Nano, 2024, 18(4), 2906.
31 Shahzad F, Alhabeb M, Hatter C B, et al. Science, 2016, 353(6304), 1137.
32 Iqbal A, Shahzad F, Hantanasirisakul K, et al. Science, 2020, 369(6502), 446.
33 Wang P L, Mai T, Zhang W, et al. Small, 2024, 20(3), 2304914.
34 Hassan T, Iqbal A, Yoo B, et al. Nano-Micro Letters, 2024, 16(1), 216.
35 Li W, Zhou T, Zhang Z, et al. Science, 2024, 385(6704), 62.
36 Wang S, Li D, Jiang L, et al. Composites Science and Technology, 2022, 221, 109337.
37 Hu Y, Yang G, Chen J, et al. Composites Part A: Applied Science and Manufacturing, 2024, 178, 107990.
38 Ji B, Huang J, Wu Y. Aerospace Science and Technology, 2024, 153, 109416.
39 Lu X, Huang J, Wu Y, et al. Chinese Journal of Aeronautics, 2023, 36(3), 137.
40 Taj Z U D, Bilal A, Awais M, et al. Aerospace Science and Technology, 2023, 133, 108114.
41 An Z, Li Y, Ding S, et al. Journal of Alloys and Compounds, 2024, 1007, 176368.
42 Liu S, Wang J, Zhang B, et al. Carbon, 2024, 219, 118802.
43 Xiong X, Zhang H, Lv H, et al. Carbon, 2024, 219, 118834.
44 Wang H, Zhao J, Wang Z, et al. ACS Applied Materials & Interfaces, 2023, 15(3), 4580.
45 Li X, Xu D, Zhou D, et al. Carbon, 2023, 208, 374.
46 Li X, Wu Z, You W, et al. Nano-Micro Letters, 2022, 14(1), 73.
47 Wang S, Li D, Zhou Y, et al. ACS Nano, 2020, 14(7), 8634.
48 Li M, Zhu W, Li X, et al. Advanced Science, 2022, 9(16), 2201118.
49 Jiang H, Cai L, Pan F, et al. Advanced Science, 2023, 10(21), 2301599.
50 Ma H. Performance investigation on anti-icer of composite engine inlet vane. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese).
马辉. 发动机复合材料导向叶片防冰性能研究. 博士学位论文, 南京航空航天大学, 2013.
51 Qin W, Lin C, Geng J, et al. Ceramics International, 2022, 48(22), 32767.
52 Li G. Preparation and performance of MXene-based materials for aircraft ice management. Master's Thesis, Civil Aviation Flight University of China, China, 2024 (in Chinese).
李刚. MXene基飞机冰管理材料制备及性能研究. 硕士学位论文, 中国民用航空飞行学院, 2024.
53 Zhao Y, Yan C, Hou T, et al. ACS Applied Materials & Interfaces, 2022, 14(22), 26077.
54 Zhang L, Zhang H, Yu X, et al. ACS Applied Materials & Interfaces, 2022, 14(47), 53298.
55 Wang J, Li P, Yu P, et al. Advanced Composites and Hybrid Materials, 2022, 5(4), 3035.
56 Chen J, Chen X, Hao Z, et al. ACS Applied Materials & Interfaces, 2024, 16(20), 26713.
57 Xu Y, Zhu J, Wu Z, et al. Advanced Composites and Hybrid Materials, 2018, 1(3), 460.
58 Ostermann M, Schodl J, Lieberzeit P A, et al. Materials, 2023, 16(4), 1743.
59 Xiao W B, Li H F, Qu C Y, et al. Aeronautical Science & Technology, 2023, 34(1), 105 (in Chinese).
肖万宝, 李洪峰, 曲春艳, 等. 航空科学技术, 2023, 34(1), 105.
60 Xu B, Gogotsi Y. Advanced Functional Materials, 2020, 30(47), 2007011.
61 Ling Z, Ren C E, Zhao M Q, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47), 16676.
62 Kumar V, Yeole P, Majed A, et al. Advanced Materials Interfaces, 2021, 8(17), 2100803.
63 Hou T, Zhao Y, Ding L, et al. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107114.
64 Chen X, Hui Y, Zhang J, et al. Composites Part B: Engineering, 2023, 259, 110713.
65 Wang X, Lu J, Lu S, et al. Composites Communications, 2021, 27, 100850.
66 Kang J, Liu T, Lu Y, et al. Composites Part B: Engineering, 2022, 245, 110229.
67 Rufai O, Chandarana N, Gautam M, et al. Composite Structures, 2020, 254, 112861.
68 Sadler D J, Ahn C H. Sensors and Actuators A: Physical, 2001, 91(3), 340.
69 Tuncol G, Danisman M, Kaynar A, et al. Composites Part A: Applied Science and Manufacturing, 2007, 38(5), 1363.
70 Carlone P, Palazzo G S. Applied Composite Materials, 2014, 22(5), 543.
71 Lee S H, Kim S W. Composite Structures, 2020, 251, 112544.
72 Wang Q, Ma C, Yang D, et al. Composites Communications, 2023, 40, 101609.
73 Irfan M S, Ali M A, Khan T, et al. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107351.
74 Wang Y, Hui Y, Chen X, et al. Chemical Engineering Journal, 2024, 497, 154386.
[1] 王九江, 李大武. 基于纳米荧光碳点可视化显现潜在手印的研究进展[J]. 材料导报, 2025, 39(9): 24020140-13.
[2] 刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
[3] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[4] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[5] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[6] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[7] 郭洪飞, 张爱迪, 赵敏. 高熵氧化物陶瓷制备与应用的研究进展[J]. 材料导报, 2025, 39(24): 24100178-9.
[8] 张皓天, 刘丽, 刘峻彤, 李扬动. 基于常见金属及金属氧化物纳米材料在手印显现中的应用进展[J]. 材料导报, 2025, 39(22): 24110191-13.
[9] 颜贵龙, 涂俊, 孙瑞翎, 明潇然, 程金波, 王犁, 李振宇, 武元鹏. Fe3O4-ZIF-67@碳纳米纤维复合材料的吸波性能与机制[J]. 材料导报, 2025, 39(22): 24110225-7.
[10] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[11] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[12] 夏梓文, 梁平, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同水热制备条件对ZnO纳米材料性能的影响[J]. 材料导报, 2025, 39(16): 24070151-12.
[13] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[14] 李亚南, 王凯, 刘得军, 谭志良. MXene基复合材料在电磁屏蔽领域的研究进展[J]. 材料导报, 2025, 39(14): 24080149-11.
[15] 郭首政, 邢东. 纳米材料在木材超疏水领域的应用[J]. 材料导报, 2025, 39(14): 24050202-10.
[1] ZHANG Kaiming, LI Chunyu, SUN Hongru, HAN Zijian, ZHANG Xu, WEI Shuang,LU Xuge, DONG Wei, SHEN Ding, YANG Shaobin. First-principles Study of Boron-doped Graphene as Anode Material for Lithium-ion Batteries[J]. Materials Reports, 2025, 39(24): 24120040 -9 .
[2] LIAO Muzi, HE Liang, WANG Baokai, NIU Mengyang, SUN Chang, YUAN Yunqi,CAO Wenbin, WANG Qi. Influence of Dispersants on the Dispersion Performance of SiO2 Aerogel Powder in Aqueous Systems[J]. Materials Reports, 2025, 39(24): 24120191 -6 .
[3] . [J]. Materials Reports, 2026, 40(1): 0 .
[4] WU Yue. Applications of Plasma in Preparation and Modification of Cathode Materials for Metal-ion Batteries[J]. Materials Reports, 2026, 40(1): 24120198 -12 .
[5] LI Chaolei. Study on Radial Pores Structure of Microporous Layer with High Mass Transportation in Proton Exchange Membrane Fuel Cells[J]. Materials Reports, 2026, 40(1): 25010096 -5 .
[6] YANG Han. MOPSO-based Optimization Design of the Structural Parameters of Π-type Air-cooled BTMS[J]. Materials Reports, 2026, 40(1): 24090090 -9 .
[7] CHEN Wei, HOU Sifan, WANG Wei, FAN Jinpeng. Synthesis and Properties of High-temperature-resistant Alumina-based Nanorod Aerogels[J]. Materials Reports, 2026, 40(1): 25020183 -9 .
[8] HU Pengfei, LIN Jie, YANG Jiaxin, JIANG Yun, XIE Chen. A Review on the Regulation of Transition Metal Carbide Ceramics Properties by Carbon Vacancies[J]. Materials Reports, 2026, 40(1): 24120017 -11 .
[9] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[10] WANG Wei. Characteristics of Force Chain Composition in Asphalt Mixture Under Compression[J]. Materials Reports, 2026, 40(1): 24030044 -6 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed