Research Progress in Visualization of LFPs Based on Nano Fluorescent Carbon Dots
WANG Jiujiang, LI Dawu*
Key Laboratory of Impression Evidence Examination and Identification Technology of Ministry of Public Security, College of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854, China
Abstract: The fingerprints at the crime scene are important trace evidence and judicial officers usually improve the visualization of latent fingerprints (LFPs) by developing and enhancing them using different materials such as fingerprint powders. Therefore, the development of fingerprint powders with high sensitivity, strong anti-interference and good stability and biocompatibility is a research hotspot for criminal science and technology personnel. In recent years, some new materials and methods applied to the development of LFPs have emerged one after another, making up for the shortcomings of conventional development techniques. Among them, luminescent materials based on quantum dots, fluorescent carbon dots (CDs) and rare earth nano-materials show great potential in the development of LFPs. In view of the luminescence characteristics of fluorescent materials, this paper reviews the application progress of fluorescent carbon dots in the visualization of LFPs, describes the synthesis and physicochemical properties of CDs, and evaluates the effects of CDs powder of initial state, composite CDs powder and CDs suspension in fingerprints development, specifically including pure CDs, doped CDs, loaded CDs, core-shell CDs, CDs suspension of small particles and nano carbon dots suspension based on special effects. Meanwhile, this review proposes the possible luminescence mechanism of CDs and puts forward the future development direction of fluorescent carbon dots applied to the visualization of fingerprints based on existing problems.
王九江, 李大武. 基于纳米荧光碳点可视化显现潜在手印的研究进展[J]. 材料导报, 2025, 39(9): 24020140-13.
WANG Jiujiang, LI Dawu. Research Progress in Visualization of LFPs Based on Nano Fluorescent Carbon Dots. Materials Reports, 2025, 39(9): 24020140-13.
1 Kaushal N, Kaushal P. Journal of Biometrics & Biostatics, 2011, 2(123), 2. 2 Lennard C. Australian Journal of Forensic Sciences, 2007, 39(2), 55. 3 Wang M, Shen D P, Zhu Z X, et al. Talanta, 2021, 231, 122138. 4 Verhagen A, Kelarakis A. Nanomaterials, 2020, 10(8), 1535. 5 Xu X Y, Ray R, Gu Y L, et al. Journal of the American Chemical Society, 2004, 126(40), 12736. 6 Li Q, Guo Z, Zhao X, et al. Nanotechnology, 2020, 31(33), 335501. 7 Thirumalaivasan N, Wu S P. ACS Applied Bio Materials, 2020, 3(9), 6439. 8 Nugroho D, Keawprom C, Chanthai S, et al. Nanomaterials, 2022, 12(3), 400. 9 González-González R B, González L T, Madou M, et al. Nanomaterials, 2022, 12(3), 298. 10 Li C, Chen Y Q, Quan Z P, et al. Materials Reports, 2023, 37(15), 33 (in Chinese). 李晨, 陈叶青, 全志鹏, 等. 材料导报, 2023, 37(15), 33. 11 Shi Y H, He J L, Ding S, et al. Materials Reports, 2024, 38(9), 22090162 (in Chinese). 史一涵, 贺健林, 丁晟, 等. 材料导报, 2024, 38(9), 22090162. 12 Wang H J, Yu T T, Chen H L, et al. Dyes and Pigments, 2018, 159, 245. 13 Wang H J, Hou W Y, Yu T T, et al. Dyes and Pigments, 2019, 170, 107623. 14 Bahadur R, Kumawat M K, Thakur M, et al. Journal of Luminescence, 2019, 208, 428. 15 Xu X, Mo L, Li W, et al. Chinese Chemical Letters, 2021, 32(12), 3927. 16 Wang H J, Hou W Y, Kang J, et al. Dalton Transactions, 2021, 50(35), 12188. 17 Feng Q, Xie Z, Zheng M. Sensors and Actuators B:Chemical, 2022, 351, 130976. 18 Zhao L, Zhang D, Wang X, et al. Molecules, 2023, 28(15), 5917. 19 Wang G P, Zhang P, Wang G Y. Chemical Journal of Chinese Universities, 2019, 40(12), 2583 (in Chinese). 王桂萍, 张平, 王桂燕. 高等学校化学学报, 2019, 40(12), 2583. 20 Dong M H, Li F, Xu Y J, et al. Chinese Journal of Inorganic Chemistry, 2023, 39(8), 1527 (in Chinese). 董美含, 李锋, 徐永娟, 等. 无机化学学报, 2023, 39(8), 1527. 21 Luo K, Li W J, Luo X K, et al. Diamond and Related Materials, 2024, 142, 110837. 22 Xu J Y, Zhang Y M, Guo X J, et al. Journal of Luminescence, 2023, 256, 119625. 23 Kumar A, Negi K, Sahu S K. New Journal of Chemistry, DOI: 10. 1039/D4NJ00321G. 24 Prabakaran E, Pillay K. Journal of Materials Research and Technology, 2021, 12, 1856. 25 Li H, Guo X, Liu J, et al. Optical Materials, 2016, 60, 404. 26 Wang C, Zhou J, Lulu L, et al. Particle & Particle Systems Characterization, 2018, 35(3), 1700387. 27 Ren G, Meng Y, Zhang Q, et al. New Journal of Chemistry, 2018, 42(9), 6824. 28 Algarra M, Bartolić D, Radotić K, et al. Talanta, 2019, 194, 150. 29 Kumari R, Pal K, Karmakar P, et al. ACS Applied Nano Materials, 2019, 2(9), 5900. 30 Niu X, Song T, Xiong H. Chinese Chemical Letters, 2021, 32(6), 1953. 31 Liu T F, Yin G C, Song Z Q, et al. ACS Materials Letters, 2023, 5(3), 846. 32 Pei L C, Zhang W Y, Yang S Q, et al. New Journal of Chemistry, 2023, 47(27), 12926. 33 Cao X Y, Chen J S, Chen Y, et al. Journal of Materials Chemistry C, 2024, 12(1), 187. 34 Li T T, Ning Y X, Pang J Y, et al. New Journal of Chemistry, 2023, 47(1), 147. 35 Ramasubburayan R, Kanagaraj K, Gnanasekaran L, et al. Waste and Biomass Valorization, DOI: 10. 1007/s12649-024-02442-2. 36 Zheng Y X, Arkin K, Hao J W, et al. Advanced Optical Materials, 2021, 9(19), 2100688. 37 Zhang W B, Shi J L, Ma J Z, et al. Materials Reports, 2022, 36(7), 145 (in Chinese). 张文博, 石建丽, 马建中, 等. 材料导报, 2022, 36(7), 145. 38 Zhang X Q, Jia J B, Yin L S, et al. Materials Reports, 2023, 37(S2), 69 (in Chinese). 张晓琪, 贾建波, 尹刘森, 等. 材料导报, 2023, 37(S2), 69. 39 Cao Z Y, Liu X H, Zheng J X, et al. Materials Reports, 2023, 37(7), 5 (in Chinese). 曹哲勇, 刘兴华, 郑静霞, 等. 材料导报, 2023, 37(7), 5. 40 He C, Xu P, Zhang X H, et al. Carbon, 2022, 186, 91. 41 Yao X X, Lewis R E, Haynes C L. Accounts of Chemical Research, 2022, 55(23), 3312. 42 Alafeef M, Srivastava I, Aditya T, et al. Small, 2024, 20(4), 2303937. 43 Fu Q, Zhang K L, Lu K Z, et al. Journal of Alloys and Compounds, 2024, 971, 172688. 44 Batabyal S K, Pradhan B, Mohanta K, et al. Carbon Quantum Dots for Sustainable Energy and Optoelectronics, Woodhead Publishing, UK, 2023, pp. 6. 45 Xu A L, Wang G, Li Y Q, et al. Small, 2020, 16(48), 2004621. 46 Zhang C X, Zhao S Y, Liu W, et al. Composites Part B:Engineering, 2023, 260, 110752. 47 Fernandes D, Krysmann M J, Kelarakis A. Chemical Communications, 2015, 51(23), 4902. 48 Zhao Y B, Ma Y, Song D, et al. Analytical Methods, 2017, 9(33), 4770. 49 Li G, Wang X, Zhang J. CrystEngComm, 2018, 20(34), 5056. 50 Amrutha V S, Anantharaju K S, Prasanna D S, et al. Arabian Journal of Chemistry, 2020, 13(1), 1449. 51 Prabakaran E, Pillay K. Arabian Journal of Chemistry, 2020, 13(2), 3817. 52 Dong X Y, Niu X Q, Zhang Z Y, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29549. 53 Ding L, Peng D, Wang R, et al. Journal of Alloys and Compounds, 2021, 856, 158160. 54 Qin Z, Wen M, Bai J, et al. New Journal of Chemistry, 2021, 45(26), 11596. 55 He W, Sun X, Cao X. ACS Sustainable Chemistry & Engineering, 2021, 9(12), 4477. 56 Wang X J, Yuan Y Y, Sun Y X, et al. RSC Advances, 2022, 12(42), 27199. 57 Zhao J X, Zhang Y, Chen M J, et al. Optics Express, 2024, 32(7), 12394. 58 Yuan W H, Zhou J, Jiang M Y, et al. Industrial Crops and Products, 2023, 205, 117563. 59 Zhang H M, Sun L L, Guo X J, et al. Applied Surface Science, 2023, 613, 155945. 60 Yuan C J, Wang M, Li M, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(43), 14294. 61 Teng X M, Sun X B, Pan W, et al. ACS Applied Nano Materials, 2022, 5(4), 5168. 62 Upadhyay P, Raghavan A, Ayyappan S M A, et al. ChemNanoMat, 2023, 9(9), e202300169. 63 Ren J K, Stagi L, Innocenzi P. Progress in Solid State Chemistry, 2021, 62, 100295. 64 Peng D, Liu X, Huang M, et al. Dalton Transactions, 2018, 47(16), 5823. 65 Yadav H J A, Eraiah B, Basavaraj R B, et al. Journal of Alloys and Compounds, 2018, 742, 1006. 66 Zhai Y, Shen F, Zhang X, et al. Journal of Colloid and Interface Science, 2019, 554, 344. 67 Hu Z, Dai H, Zhou W, et al. Journal of Alloys and Compounds, 2021, 889, 161660. 68 Bao X, Liu Z X, Tian Z, et al. Journal of Luminescence, 2024, 267, 120408. 69 Li D W, Zhang X F, Zhang X T, et al. Optical Materials, 2023, 137, 113530 70 Liu J, Luo Y M, Ran Z, et al. Chemical Engineering Journal, 2023, 474, 145597. 71 Chen J F, Sun Q Y, Qi S Y, et al. Forensic Science and Technology, DOI: 10. 16467/j. 1008-3650. 2023. 0062 (in Chinese). 陈锦峰, 孙茜沄, 齐思雨, 等. 刑事技术, DOI: 10. 16467/j. 1008-3650. 2023. 0062. 72 Yuan C J, Wang M, Li M, et al. Progress in Chemistry, 2022, 34(9), 2108 (in Chinese). 袁传军, 王猛, 李明, 等. 化学进展, 2022, 34(9), 2108. 73 Wang M, Ju J S, Zhu Z X, et al. Scientia Sinica Chimica, 2019, 49(12), 1425 (in Chinese). 王猛, 鞠金晟, 朱中旭, 等. 中国科学:化学, 2019, 49(12), 1425. 74 Qu S, Wang X, Lu Q, et al. Angewandte Chemie International Edition, 2012, 51(49), 12215. 75 Dilag J, Kobus H, Yu Y, et al. Polymer International, 2015, 64(7), 884. 76 Chen J, Wei J S, Zhang P, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 18429. 77 Jiang B P, Yu Y X, Guo X L, et al. Carbon, 2018, 128, 12. 78 Zhao D, Ma W, Xiao X. Nanomaterials, 2018, 8(8), 612. 79 Wang C F, Cheng R, Ji W Q, et al. ACS Applied Materials & Interfaces, 2018, 10(45), 39205. 80 Yun S, Kang E S, Choi J. Nanoscale Advances, 2022, 4(8), 2029. 81 Eskalen H, Çeşme M, Kerli S, et al. Journal of Chemical Research, 2021, 45(5-6), 428.