Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24070151-12    https://doi.org/10.11896/cldb.24070151
  无机非金属及其复合材料 |
不同水热制备条件对ZnO纳米材料性能的影响
夏梓文1, 梁平1, 冯扬1, 杨伟业1,2, 彭鸿雁1,2, 赵世华1,2,3,*
1 海南师范大学物理与电子工程学院,海口 571158
2 海南省院士创新平台,海口 571158
3 商丘师范学院电子电气工程学院,河南 商丘 476000
The Effects of Different Hydrothermal Preparation Conditions on the Properties of ZnO Nano-materials
XIA Ziwen1, LIANG Ping1, FENG Yang1, YANG Weiye1,2, PENG Hongyan1,2, ZHAO Shihua1,2,3,*
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
2 The Innovation Platform for Academicians of Hainan Province, Haikou 571158, China
3 School of Electronic and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
下载:  全 文 ( PDF ) ( 34457KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ZnO是一种非常重要的II-VI族半导体,有着优异的光电特性,在发光器件、太阳能电池、激光器以及光电探测器等领域具有广泛应用和发展潜力,其材料制备的方法呈多样性。水热法因其简单、易操作、成本低等优点被认为是制备ZnO单晶生长的择优方法。在研究不同水热法实验参数对ZnO纳米材料形貌和性能的影响时,绝大多数文献仅仅讨论2~3个实验参数变量,很少有文献报道全部可能的实验参数改变对ZnO纳米材料的影响。本文简要介绍了水热法的原理及在制备纳米材料方面的优势,并详细讨论了不同实验参数对ZnO纳米材料制备的影响,如反应材料、Zn2+/OH-、添加剂、反应时间和温度、实验设备和退火条件。综合分析了不同实验参数对材料形貌和性能的影响以及不同稀土掺杂元素对ZnO纳米材料性能的影响。希望这项工作能对未来水热法合成纳米材料的研究有所帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏梓文
梁平
冯扬
杨伟业
彭鸿雁
赵世华

关键词:  水热法  反应条件  ZnO  掺杂  纳米材料  晶体结构    
Abstract: ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties, making it widely applicable and promising for use in light-emitting devices, solar cells, lasers, and photodetectors. The methods for preparing ZnO are diverse, and among them, the hydrothermal method is favored for its simplicity, ease of operation, and low cost, making it an optimal choice for ZnO single-crystal growth. Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters, with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials. The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article. The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided, which including reaction materials, Zn2+/OH- ratio, reaction time and temperature, additives, experimental equipment, and annealing conditions. The review co-vers how different experimental parameters affect the morphology and performance of the materials, as well as how different rare earth doping elements influence the performance of ZnO nano-materials. It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.
Key words:  hydrothermal method    reaction condition    ZnO    doping    nano-material    crystalline structure
出版日期:  2025-08-25      发布日期:  2025-08-15
ZTFLH:  O469  
  TB321  
  TB34  
基金资助: 国家自然科学基金(U1704145);海南省自然科学基金(522MS062);海南省院士创新平台科研项目(YSPTZX202207)
通讯作者:  zsh@hainnu.edu.cn   
作者简介:  Ziwen Xia is a postgraduate student at the College of Physics and Electronic Engineering,Hainan Normal University,conducting research under the gui-dance of Professor Shihua Zhao.His primary research area is the preparation of nano-materials and the study of their luminescent properties.
引用本文:    
夏梓文, 梁平, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同水热制备条件对ZnO纳米材料性能的影响[J]. 材料导报, 2025, 39(16): 24070151-12.
XIA Ziwen, LIANG Ping, FENG Yang, YANG Weiye, PENG Hongyan, ZHAO Shihua. The Effects of Different Hydrothermal Preparation Conditions on the Properties of ZnO Nano-materials. Materials Reports, 2025, 39(16): 24070151-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070151  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24070151
1 Li H M, Meng J B, Yu H Y, et al. Materials Reports, 2024, 38(3), 22110123 (in Chinese).
2 Dong Z, Du Z Q, Wu X Y, et al. International Journal of Biological Macromolecules, 2022, 209(A), 525.
3 Wu H Y, Xie Q S, Li A, et al. Materials Letters, 2015, 139(15), 393.
4 Zou R, He G, Xu K, et al. Journal of Materials Chemistry A, 2013, 1(29), 8445.
5 Zhao S H, Wang L L, Yang L, et al. Physica B:Condensed Matter, 2010, 405(15), 3200.
6 Zhang N, Zhuo N Z, Cheng S W, et al. Spectroscopy and Spectral Analysis, 2018, 38(10), 3030 (in Chinese).
7 Zhao S H, Jia T J, Cui Y T, et al. Materials Reports, 2011, 25(10), 102 (in Chinese).
8 Zhao S H, Ma H F, Jia T J, et al. Materials Reports, 2011, 25(5), 139 (in Chinese).
9 Gultepe O, Atay F, Dikmen Z. Applied Physics A, 2023, 129(8), 586.
10 Hu H M, Huang X H, Deng C H, et al. Materials Chemistry and Physics, 2007, 106(1), 58.
11 Li W F, Sun Y G, Xu J L. Nano-Micro Letters, 2012, 4(2), 98.
12 Zhao S H. New Chemical Materials, 2013, 41(11), 23 (in Chinese).
13 Zheng X F. Chemical Industry Times, 2010, 24(6), 50 (in Chinese).
14 Huang F, Zheng W, Wang M Y, et al. Journal of Synthetic Crystals, 2021, 50(02), 209 (in Chinese).
15 Ohshima E, Ogino H, Niikura I, et al. Journal of Crystal Growth, 2004, 260(1-2), 166.
16 Chu D W, Zeng Y P, Jiang D L. Journal of Inorganic Materials, 2006, 21(3), 571 (in Chinese).
17 Stambolova I, Blaskov V, Stoyanova D, et al. Bulletin of Materials Science, 2017, 40(3), 483.
18 Vergés M A, Mifsud A, Serna C J. J Chem Soc, Faraday Trans, 2004, 86(6), 959.
19 Gerbreders V, Krasovska M, Sledevskis E, et al. CrystEngComm, 2020, 22(8), 1346.
20 Guo W W, Liu T M, Huang L, et al. Physica E:Low-dimensional Systems and Nanostructures, 2011, 44(3), 680.
21 Wang L Y, Xu X, Luo G H, et al. Chemical Reaction Engineering and Technology, 2020, 36(6), 498 (in Chinese).
22 Guo C F. China Powder Science and Technology, 2014, 20(2), 64 (in Chinese).
23 Hao R, Deng X, Yang Y B, et al. Acta Chimica Sinica, 2014, 72(12), 1199 (in Chinese).
24 Vayssieres L. Advanced Materials, 2003, 15(5), 464.
25 Yang J F, Zhang Z Y, You T G, et al. Chinese Physics B, 2009, 18(9), 4019.
26 Wang B G, Shi E W, Zhong W Z, et al. Chinese Science Bulletin, 1997, 42(12), 1041 (in Chinese).
27 Yuan B X, Xia Y C, Li M, et al. International Journal of Materials Research, 2018, 109 (10), 910.
28 Shin C M, Heo J H, Park J H, et al. Physica E:Low-dimensional Systems and Nanostructures, 2010, 43(1), 54.
29 Zhao L C, Xie Y, Zhang Z, et al. Materials Reports, 2019, 33(2), 577 (in Chinese).
30 Qin Z, Liao Q, Huang Y, et al. Materials Chemistry and Physics, 2010, 123(2-3), 811.
31 Wei A, Sun X W, Xu C X, et al. Nanotechnology, 2006, 17(6), 1740.
32 Su Z W, Fang Y, Li Z, et al. China Ceramics, 2013, 49(6), 13 (in Chinese).
33 Holi A M, Zainal Z, Talib Z A, et al. Optik, 2016, 127(23), 11111.
34 Li C, Zhou M, Shen J. Journal of Functional Materials, 2011, 42(7), 1327.
35 Bin L, Hua C Z. Journal of the American Chemical Society, 2003, 125 (15), 4430.
36 Greene L E, Yuhas B D, Law M, et al. Inorganic Chemistry, 2006, 45(19), 7535.
37 Fan X Y, Wang Y X, Yu X. Bulletin of the Chinese Ceramic Society, 2009, 28 (2), 374 (in Chinese).
38 Du J M, Liu Z M, Huang Y, et al. Journal of Crystal Growth, 2005, 280(1-2), 126.
39 Dong Q H, Li Z J. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2014, 35(3), 246 (in Chinese).
40 Sun C, Wu X W, Meng H, et al. Journal of Physics and Chemistry of Solids. 2014, 75(6), 726.
41 Zhang J J. Hydrothermal synthesis of nanometer ZnO and their gas sensing properties. Master's thesis, Harbin University of Science and Technology, China, 2015 (in Chinese).
42 Wang D, Seo H W, Tin C C, et al. Journal of Applied Physics, 2006, 99 (11), 113509.
43 Yang Q, Luo S Y, Chen J R. Semiconductor Optoelectronics, 2018, 39(1), 77 (in Chinese).
44 Yang J, Quan Z W, Kong D Y, et al. Crystal Growth & Design, 2007, 7(4), 730.
45 Zhang J J, Guo E J, Wang L P, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(3), 736.
46 Zhao X Q, Kim C R, Lee J Y, et al. Applied Surface Science, 2009, 255(11), 5861.
47 Ziani A, Davesnne C, Labbé C, et al. Thin Solid Films, 2014, 553, 52.
48 Ková J, Hronec P, Búc D, et al. Applied Surface Science, 2015, 337, 254.
49 de Souza G, Nery L H, Malafatti J O D, et al. MRS Communications, 2022, 12(4), 409.
50 Xia D L, Yan X Z, Qin K, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(04), 1132 (in Chinese).
51 Zhu Y X, Li J W, Li Q X, et al. Journal Of Beijing University Of Technology, 2023, 49(2), 188 (in Chinese).
52 Yan Y L, Zhang L W, Wang J L. Journal of Donghua University(English Edition), 2022, 39(2), 134.
53 Ma M G, Zhu Y J, Cheng G F, et al. Materials Letters, 2008, 62(3), 507.
54 Zhu Z F, Yang D, Liu H. Advanced Powder Technology, 2011, 22(4), 493.
55 Hasanpoor M, Aliofkhazraei M, Delavari H. Procedia Materials Science, 2015, 11, 320.
56 Wang X Y, Zhang F C, Zhang X, et al. Ordnance Material Science and Engineering, 2018, 41(4), 63 (in Chinese).
57 Gao X Q, Tian J F, Gui Y H, et al. New Chemical Materials, 2014, 42(3), 102 (in Chinese).
58 Wang Y X, Cui X W, Zang G D, et al. Journal of Functional Materials, 2018, 49(01), 01001 (in Chinese).
59 Li Q W, Bian J M, Wang J W, et al. Chinese Journal of Luminescence, 2010, 31(2), 253 (in Chinese).
60 Zhang T Y, Xin M, Lin Z Y, et al. Chinese Rare Earths, 2020, 41(1), 65 (in Chinese).
61 Zhu L, Luo L C, Wang X. Chinese Journal of Environmental Engineering, 2015, 9(4), 1698 (in Chinese).
62 Wei Z R, Wang W W, Cai S Z, et al. Journal of Synthetic Crystals, 2007, 36(1), 81 (in Chinese).
63 Li H M, Meng J B, Yu H Y, et al. Materials Reports, 2024, 38(13), 22110123 (in Chinese).
64 Ekambaram S, Iikubo Y, Kudo A. Journal of Alloys and Compounds, 2007, 433(1-2), 237.
65 Dagar M, Kumar S, Jain A, et al. Journal of the Australian Ceramic Society, 2022, 58(5), 1571.
[1] 王九江, 李大武. 基于纳米荧光碳点可视化显现潜在手印的研究进展[J]. 材料导报, 2025, 39(9): 24020140-13.
[2] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[3] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[4] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[5] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[6] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[7] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[8] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[9] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[10] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[11] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[12] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[13] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[14] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[15] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[1] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[2] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[3] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[4] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[5] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[6] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[7] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[8] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
[9] TIAN Hanwei, WANG Aiqin, XIE Jingpei, CHANG Qinghua, LIU Shuaiyang. Optimization of Cast-Rolling Process of Copper Aluminum Composite Plate and Experimental Analysis[J]. Materials Reports, 2019, 33(10): 1706 -1711 .
[10] CUI Liqun, HAN Shengli, LI Daren, HU Jianzhao, LIU Zuyan. Numerical Simulation on the Process of Powder Rolling for Tungsten-copper[J]. Materials Reports, 2019, 33(z1): 358 -361 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed