Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24020140-13    https://doi.org/10.11896/cldb.24020140
  无机非金属及其复合材料 |
基于纳米荧光碳点可视化显现潜在手印的研究进展
王九江, 李大武*
中国刑事警察学院刑事科学技术学院,痕迹检验鉴定技术公安部重点实验室,沈阳 110854
Research Progress in Visualization of LFPs Based on Nano Fluorescent Carbon Dots
WANG Jiujiang, LI Dawu*
Key Laboratory of Impression Evidence Examination and Identification Technology of Ministry of Public Security, College of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854, China
下载:  全 文 ( PDF ) ( 78381KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 案发现场的手印是一种重要的痕迹物证,对其进行显现或增强是提高手印可视化的主要方法。开发灵敏度高、稳定性好、抗干扰能力强和生物相容性良好的手印显现粉末是刑事科学技术人员的研究热点。近年来,一些应用于手印显现的新材料和新方法相继出现,弥补了传统显现方法的不足。其中以量子点、纳米荧光碳点、稀土转换发光纳米材料为主的发光材料在手印可视化显现中展现巨大的潜力。针对荧光材料发光特性,本文综述了纳米荧光碳点在手印可视化显现中的应用进展,阐述了纳米荧光碳点的合成和理化特性,评估了初态碳点粉末、复合型碳点粉末以及纳米碳点悬浮液应用于手印显现的效果,具体包括基于单一型碳点、掺杂型碳点、负载型碳点、核壳型碳点的粉末法手印显现以及基于小微粒纳米碳点悬浮液和基于特殊效应的纳米碳点悬浮液的手印显现方法,提出了碳点材料可能的发光机理,并就当前存在的问题提出了未来纳米荧光碳点应用于手印显现的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王九江
李大武
关键词:  碳点  纳米材料  潜在手印  荧光  手印可视化    
Abstract: The fingerprints at the crime scene are important trace evidence and judicial officers usually improve the visualization of latent fingerprints (LFPs) by developing and enhancing them using different materials such as fingerprint powders. Therefore, the development of fingerprint powders with high sensitivity, strong anti-interference and good stability and biocompatibility is a research hotspot for criminal science and technology personnel. In recent years, some new materials and methods applied to the development of LFPs have emerged one after another, making up for the shortcomings of conventional development techniques. Among them, luminescent materials based on quantum dots, fluorescent carbon dots (CDs) and rare earth nano-materials show great potential in the development of LFPs. In view of the luminescence characteristics of fluorescent materials, this paper reviews the application progress of fluorescent carbon dots in the visualization of LFPs, describes the synthesis and physicochemical properties of CDs, and evaluates the effects of CDs powder of initial state, composite CDs powder and CDs suspension in fingerprints development, specifically including pure CDs, doped CDs, loaded CDs, core-shell CDs, CDs suspension of small particles and nano carbon dots suspension based on special effects. Meanwhile, this review proposes the possible luminescence mechanism of CDs and puts forward the future development direction of fluorescent carbon dots applied to the visualization of fingerprints based on existing problems.
Key words:  carbon dots    nano material    latent fingerprint    fluorescence    fingerprint visualization
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TB34  
基金资助: 公安部科技强警基础工作专项(2021JC07);痕迹检验鉴定技术公安部重点实验室开放课题(2018HJKF08)
通讯作者:  *李大武,中国刑事警察学院副教授、硕士研究生导师。2003年沈阳师范大学化学系应用化学专业本科毕业,2010年东北大学理学院材料物理与化学专业博士毕业后到中国刑事警察学院工作至今。目前主要从事功能材料、公安科技等方面的研究工作。67021063@qq.com   
作者简介:  王九江,2023年6月于山东警察学院获得工学学士学位。现为中国刑事警察学院刑事科学技术学院硕士研究生,在李大武副教授的指导下进行研究。目前主要研究领域为功能材料、公安科技等。
引用本文:    
王九江, 李大武. 基于纳米荧光碳点可视化显现潜在手印的研究进展[J]. 材料导报, 2025, 39(9): 24020140-13.
WANG Jiujiang, LI Dawu. Research Progress in Visualization of LFPs Based on Nano Fluorescent Carbon Dots. Materials Reports, 2025, 39(9): 24020140-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020140  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24020140
1 Kaushal N, Kaushal P. Journal of Biometrics & Biostatics, 2011, 2(123), 2.
2 Lennard C. Australian Journal of Forensic Sciences, 2007, 39(2), 55.
3 Wang M, Shen D P, Zhu Z X, et al. Talanta, 2021, 231, 122138.
4 Verhagen A, Kelarakis A. Nanomaterials, 2020, 10(8), 1535.
5 Xu X Y, Ray R, Gu Y L, et al. Journal of the American Chemical Society, 2004, 126(40), 12736.
6 Li Q, Guo Z, Zhao X, et al. Nanotechnology, 2020, 31(33), 335501.
7 Thirumalaivasan N, Wu S P. ACS Applied Bio Materials, 2020, 3(9), 6439.
8 Nugroho D, Keawprom C, Chanthai S, et al. Nanomaterials, 2022, 12(3), 400.
9 González-González R B, González L T, Madou M, et al. Nanomaterials, 2022, 12(3), 298.
10 Li C, Chen Y Q, Quan Z P, et al. Materials Reports, 2023, 37(15), 33 (in Chinese).
李晨, 陈叶青, 全志鹏, 等. 材料导报, 2023, 37(15), 33.
11 Shi Y H, He J L, Ding S, et al. Materials Reports, 2024, 38(9), 22090162 (in Chinese).
史一涵, 贺健林, 丁晟, 等. 材料导报, 2024, 38(9), 22090162.
12 Wang H J, Yu T T, Chen H L, et al. Dyes and Pigments, 2018, 159, 245.
13 Wang H J, Hou W Y, Yu T T, et al. Dyes and Pigments, 2019, 170, 107623.
14 Bahadur R, Kumawat M K, Thakur M, et al. Journal of Luminescence, 2019, 208, 428.
15 Xu X, Mo L, Li W, et al. Chinese Chemical Letters, 2021, 32(12), 3927.
16 Wang H J, Hou W Y, Kang J, et al. Dalton Transactions, 2021, 50(35), 12188.
17 Feng Q, Xie Z, Zheng M. Sensors and Actuators B:Chemical, 2022, 351, 130976.
18 Zhao L, Zhang D, Wang X, et al. Molecules, 2023, 28(15), 5917.
19 Wang G P, Zhang P, Wang G Y. Chemical Journal of Chinese Universities, 2019, 40(12), 2583 (in Chinese).
王桂萍, 张平, 王桂燕. 高等学校化学学报, 2019, 40(12), 2583.
20 Dong M H, Li F, Xu Y J, et al. Chinese Journal of Inorganic Chemistry, 2023, 39(8), 1527 (in Chinese).
董美含, 李锋, 徐永娟, 等. 无机化学学报, 2023, 39(8), 1527.
21 Luo K, Li W J, Luo X K, et al. Diamond and Related Materials, 2024, 142, 110837.
22 Xu J Y, Zhang Y M, Guo X J, et al. Journal of Luminescence, 2023, 256, 119625.
23 Kumar A, Negi K, Sahu S K. New Journal of Chemistry, DOI: 10. 1039/D4NJ00321G.
24 Prabakaran E, Pillay K. Journal of Materials Research and Technology, 2021, 12, 1856.
25 Li H, Guo X, Liu J, et al. Optical Materials, 2016, 60, 404.
26 Wang C, Zhou J, Lulu L, et al. Particle & Particle Systems Characterization, 2018, 35(3), 1700387.
27 Ren G, Meng Y, Zhang Q, et al. New Journal of Chemistry, 2018, 42(9), 6824.
28 Algarra M, Bartolić D, Radotić K, et al. Talanta, 2019, 194, 150.
29 Kumari R, Pal K, Karmakar P, et al. ACS Applied Nano Materials, 2019, 2(9), 5900.
30 Niu X, Song T, Xiong H. Chinese Chemical Letters, 2021, 32(6), 1953.
31 Liu T F, Yin G C, Song Z Q, et al. ACS Materials Letters, 2023, 5(3), 846.
32 Pei L C, Zhang W Y, Yang S Q, et al. New Journal of Chemistry, 2023, 47(27), 12926.
33 Cao X Y, Chen J S, Chen Y, et al. Journal of Materials Chemistry C, 2024, 12(1), 187.
34 Li T T, Ning Y X, Pang J Y, et al. New Journal of Chemistry, 2023, 47(1), 147.
35 Ramasubburayan R, Kanagaraj K, Gnanasekaran L, et al. Waste and Biomass Valorization, DOI: 10. 1007/s12649-024-02442-2.
36 Zheng Y X, Arkin K, Hao J W, et al. Advanced Optical Materials, 2021, 9(19), 2100688.
37 Zhang W B, Shi J L, Ma J Z, et al. Materials Reports, 2022, 36(7), 145 (in Chinese).
张文博, 石建丽, 马建中, 等. 材料导报, 2022, 36(7), 145.
38 Zhang X Q, Jia J B, Yin L S, et al. Materials Reports, 2023, 37(S2), 69 (in Chinese).
张晓琪, 贾建波, 尹刘森, 等. 材料导报, 2023, 37(S2), 69.
39 Cao Z Y, Liu X H, Zheng J X, et al. Materials Reports, 2023, 37(7), 5 (in Chinese).
曹哲勇, 刘兴华, 郑静霞, 等. 材料导报, 2023, 37(7), 5.
40 He C, Xu P, Zhang X H, et al. Carbon, 2022, 186, 91.
41 Yao X X, Lewis R E, Haynes C L. Accounts of Chemical Research, 2022, 55(23), 3312.
42 Alafeef M, Srivastava I, Aditya T, et al. Small, 2024, 20(4), 2303937.
43 Fu Q, Zhang K L, Lu K Z, et al. Journal of Alloys and Compounds, 2024, 971, 172688.
44 Batabyal S K, Pradhan B, Mohanta K, et al. Carbon Quantum Dots for Sustainable Energy and Optoelectronics, Woodhead Publishing, UK, 2023, pp. 6.
45 Xu A L, Wang G, Li Y Q, et al. Small, 2020, 16(48), 2004621.
46 Zhang C X, Zhao S Y, Liu W, et al. Composites Part B:Engineering, 2023, 260, 110752.
47 Fernandes D, Krysmann M J, Kelarakis A. Chemical Communications, 2015, 51(23), 4902.
48 Zhao Y B, Ma Y, Song D, et al. Analytical Methods, 2017, 9(33), 4770.
49 Li G, Wang X, Zhang J. CrystEngComm, 2018, 20(34), 5056.
50 Amrutha V S, Anantharaju K S, Prasanna D S, et al. Arabian Journal of Chemistry, 2020, 13(1), 1449.
51 Prabakaran E, Pillay K. Arabian Journal of Chemistry, 2020, 13(2), 3817.
52 Dong X Y, Niu X Q, Zhang Z Y, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29549.
53 Ding L, Peng D, Wang R, et al. Journal of Alloys and Compounds, 2021, 856, 158160.
54 Qin Z, Wen M, Bai J, et al. New Journal of Chemistry, 2021, 45(26), 11596.
55 He W, Sun X, Cao X. ACS Sustainable Chemistry & Engineering, 2021, 9(12), 4477.
56 Wang X J, Yuan Y Y, Sun Y X, et al. RSC Advances, 2022, 12(42), 27199.
57 Zhao J X, Zhang Y, Chen M J, et al. Optics Express, 2024, 32(7), 12394.
58 Yuan W H, Zhou J, Jiang M Y, et al. Industrial Crops and Products, 2023, 205, 117563.
59 Zhang H M, Sun L L, Guo X J, et al. Applied Surface Science, 2023, 613, 155945.
60 Yuan C J, Wang M, Li M, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(43), 14294.
61 Teng X M, Sun X B, Pan W, et al. ACS Applied Nano Materials, 2022, 5(4), 5168.
62 Upadhyay P, Raghavan A, Ayyappan S M A, et al. ChemNanoMat, 2023, 9(9), e202300169.
63 Ren J K, Stagi L, Innocenzi P. Progress in Solid State Chemistry, 2021, 62, 100295.
64 Peng D, Liu X, Huang M, et al. Dalton Transactions, 2018, 47(16), 5823.
65 Yadav H J A, Eraiah B, Basavaraj R B, et al. Journal of Alloys and Compounds, 2018, 742, 1006.
66 Zhai Y, Shen F, Zhang X, et al. Journal of Colloid and Interface Science, 2019, 554, 344.
67 Hu Z, Dai H, Zhou W, et al. Journal of Alloys and Compounds, 2021, 889, 161660.
68 Bao X, Liu Z X, Tian Z, et al. Journal of Luminescence, 2024, 267, 120408.
69 Li D W, Zhang X F, Zhang X T, et al. Optical Materials, 2023, 137, 113530
70 Liu J, Luo Y M, Ran Z, et al. Chemical Engineering Journal, 2023, 474, 145597.
71 Chen J F, Sun Q Y, Qi S Y, et al. Forensic Science and Technology, DOI: 10. 16467/j. 1008-3650. 2023. 0062 (in Chinese).
陈锦峰, 孙茜沄, 齐思雨, 等. 刑事技术, DOI: 10. 16467/j. 1008-3650. 2023. 0062.
72 Yuan C J, Wang M, Li M, et al. Progress in Chemistry, 2022, 34(9), 2108 (in Chinese).
袁传军, 王猛, 李明, 等. 化学进展, 2022, 34(9), 2108.
73 Wang M, Ju J S, Zhu Z X, et al. Scientia Sinica Chimica, 2019, 49(12), 1425 (in Chinese).
王猛, 鞠金晟, 朱中旭, 等. 中国科学:化学, 2019, 49(12), 1425.
74 Qu S, Wang X, Lu Q, et al. Angewandte Chemie International Edition, 2012, 51(49), 12215.
75 Dilag J, Kobus H, Yu Y, et al. Polymer International, 2015, 64(7), 884.
76 Chen J, Wei J S, Zhang P, et al. ACS Applied Materials & Interfaces, 2017, 9(22), 18429.
77 Jiang B P, Yu Y X, Guo X L, et al. Carbon, 2018, 128, 12.
78 Zhao D, Ma W, Xiao X. Nanomaterials, 2018, 8(8), 612.
79 Wang C F, Cheng R, Ji W Q, et al. ACS Applied Materials & Interfaces, 2018, 10(45), 39205.
80 Yun S, Kang E S, Choi J. Nanoscale Advances, 2022, 4(8), 2029.
81 Eskalen H, Çeşme M, Kerli S, et al. Journal of Chemical Research, 2021, 45(5-6), 428.
[1] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[2] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[3] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[4] 庞淼, 钟天源, 潘勇, 齐延新, 黄宇彬. 含硼荧光材料及其在硼中子俘获治疗中的应用[J]. 材料导报, 2025, 39(5): 24090118-6.
[5] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[6] 侯学清, 王燚婧, 尚光富, 王环江, 何淑花. 基于芘的双席夫碱荧光探针的合成及Zn2+识别研究[J]. 材料导报, 2025, 39(5): 23090108-6.
[7] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[8] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[9] 易源海, 毛茂, 彭嘉欢, 李慧杨. 金(Ⅲ)配合物发光材料的研究进展[J]. 材料导报, 2025, 39(18): 24080056-13.
[10] 夏梓文, 梁平, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同水热制备条件对ZnO纳米材料性能的影响[J]. 材料导报, 2025, 39(16): 24070151-12.
[11] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[12] 郑森哲, 董文坤, 陈东, 凌世生, 乔旭升, 樊先平. 大斯托克斯位移荧光染料研究进展[J]. 材料导报, 2025, 39(14): 24060129-8.
[13] 郭首政, 邢东. 纳米材料在木材超疏水领域的应用[J]. 材料导报, 2025, 39(14): 24050202-10.
[14] 王志航, 白二雷, 刘俊良, 周俊鹏, 任彪. 碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展[J]. 材料导报, 2025, 39(13): 24030248-9.
[15] 梁平, 夏梓文, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同制备条件下ZnO:X%Eu的光电特性研究[J]. 材料导报, 2025, 39(10): 24040188-6.
[1] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[2] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[3] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
[6] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[7] NING Honglong, ZHU Zhennan, CAI Wei, WEI Jinglin, ZHOU Shangxiong, TAO Ruiqiang, CHEN Jianqiu,LIU Xianzhe, YAO Rihui, PENG Junbiao. Interfacial Wetting in Inkjet Printing[J]. Materials Reports, 2019, 33(19): 3236 -3241 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[10] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed