Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24020122-8    https://doi.org/10.11896/cldb.24020122
  无机非金属及其复合材料 |
静电纺丝电极材料在钾基储能器件中的应用
王腾腾, 魏晓童, 刘森, 田爽*, 周通*
山东理工大学物理与光电工程学院,山东 淄博 255049
Electrospun Electrode Materials for Potassium-based Energy Storage Devices
WANG Tengteng, WEI Xiaotong, LIU Sen, TIAN Shuang*, ZHOU Tong*
School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
下载:  全 文 ( PDF ) ( 19126KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为新一代储能体系,钾基储能器件因钾资源丰富、成本低廉而受到广泛关注。然而,钾离子半径较大导致反应动力学缓慢,且在反复嵌入/脱出过程中电极材料易粉化。因此,寻找高效的电极材料是钾基储能器件发展的关键。具有一维长直特性的静电纺丝材料是构建自支撑或柔性电极的理想材料。本文归纳总结了静电纺丝碳纤维及其复合材料在微观结构调控和化学修饰等方面的研究进展,并阐释了功能化纺丝电极材料在钾离子电池、钾金属电池、钾离子混合电容器、钾硫(硒)电池和钾基双离子电池等钾基储能器件中的应用。此外,还讨论了该领域未来发展所面临的挑战和机遇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王腾腾
魏晓童
刘森
田爽
周通
关键词:  静电纺丝  碳纤维  电极材料  钾基储能器件    
Abstract: As a new generation of energy storage system, potassium-based energy storage device has received much attention due to the abundant potassium resources and low cost. However, the large radius of potassium ions leads to slow reaction kinetics and pulverization of the electrode material during repeated insertion/extraction processes. Therefore, finding efficient electrode materials is the key to the development of potassium-based energy storage devices. Electrospun materials with one-dimensional long straight properties are ideal for building self-supporting or flexible electrodes. This paper summarizes the research progress of electrospun carbon fibers and their composites in terms of microstructure modulation and chemical modification and elucidates the application of functionalized electrospun electrode materials in potassium-based energy storage devices, such as potassium-ion batteries, potassium-metal batteries, potassium-ion hybrid capacitors, potassium-sulfur (selenium) batteries, and potassium-based dual-ion batteries. In addition, challenges and opportunities for the future development of the field are discussed.
Key words:  electrostatic spinning    carbon fiber    electrode material    potassium-based energy storage device
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TB324  
  TQ316.3  
基金资助: 国家自然科学基金(22378237)
通讯作者:  *田爽,博士,讲师,硕士研究生导师,主要从事钾离子电池及电容器关键电极材料研究。tianshuang@sdut.edu.cn; 周通,博士,教授,博士研究生导师,山东省高校“青创计划”团队—新型储能材料与器件创新团队负责人,山东省优秀硕士学位论文指导教师。目前主要从事电化学储钾材料与器件应用基础研究。zhoutong@sdut.edu.cn   
作者简介:  王腾腾,硕士研究生,于山东理工大学物理与光电工程学院攻读硕士学位,师从周通教授和田爽博士,主要从事钾离子电容器正负极材料的研究。
引用本文:    
王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
WANG Tengteng, WEI Xiaotong, LIU Sen, TIAN Shuang, ZHOU Tong. Electrospun Electrode Materials for Potassium-based Energy Storage Devices. Materials Reports, 2025, 39(9): 24020122-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020122  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24020122
1 Zhang H, Meng G, Liu Q, et al. Small, 2023, 19(48), 2303165.
2 Chen S, Xin Y, Zhou Y, et al. Energy Environmental Science, 2014, 7(6), 1924.
3 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928.
4 He T, Feng J, Ru J, et al. ACS Nano, 2018, 13(1), 830.
5 Zuo W P, Zhou J E, Chen Y Y, et al. Materials Research and Application, 2024, 18(6), 866(in Chinese).
左卫朋, 周健恩, 陈跃颖, 等. 材料研究与应用, 2024, 18(6), 866.
6 Zhan J Q, Xing L D. Materials Research and Application, 2023, 17(5), 902(in Chinese).
占佳琦, 邢丽丹. 材料研究与应用, 2023, 17(5), 902.
7 Wang J, Yang N, Tang H, et al. Angewandte Chemie International Edition, 2013, 52(25), 6417.
8 Jagadale A, Zhou X, Xiong R, et al. Energy Storage Materials, 2019, 19, 314.
9 Christensen J, Albertus P, Sanchez-Carrera R S, et al. Journal of the Electrochemical Society, 2011, 159(2), R1.
10 Boaretto N, Garbayo I, Valiyaveettil-Sobhan R S, et al. Journal of Power Sources, 2021, 502, 229919.
11 Eftekhari A. Sustainable Energy & Fuels, 2017, 1(1), 14.
12 Wu Y, Wu P, Tang Y, et al. Advanced Functional Materials, 2024, 34(17), 2314344.
13 Wu Y, Wu X, Guan Y, et al. New Carbon Materials, 2022, 37(5), 852.
14 Zhang W, Liu Y, Guo Z. Science Advances, 2019, 5(5), eaav7412.
15 He H, Huang D, Tang Y, et al. Nano Energy, 2019, 57, 728.
16 Xu S, Li Z, Wei G, et al. Journal of Materials Chemistry A, 2022, 10(36), 18812.
17 Xia Y, Yang P, Sun Y, et al. Advanced Materials, 2003, 15(5), 353.
18 Jiang Z W, Liu C K, Wu H, et al. Materials Reports, 2023, 37(5), 21040283 (in Chinese).
江志威, 刘呈坤, 吴红, 等. 材料导报, 2023, 37(5), 21040283.
19 Xu C, Mu J, Zhou T, et al. Advanced Functional Materials, 2022, 32(38), 2206501.
20 Hosaka T, Kubota K, Hameed A S, et al. Chemical Reviews, 2020, 120 (14), 6358.
21 Xu Y, Du Y, Chen H, et al. Chemical Society Reviews, 2024, 53(13), 7202.
22 Liu C K, Lai K, Liu W, et al. Polymer International, 2009, 58(12), 1341.
23 He H, Huang D, Tang Y, et al. Nano Energy, 2019, 57, 728.
24 Lin X, Huang J, Zhang B. Carbon, 2019, 143, 138.
25 Liu F, Meng J, Xia F, et al. Journal of Materials Chemistry A, 2020, 8(35), 18079.
26 Chen L, Lin X, Gao J, et al. Electrochimica Acta, 2022, 403, 139654.
27 Hu X, Zhong G, Li J, et al. Energy & Environmental Science, 2020, 13(8), 2431.
28 Niu P, Wang P, Xu Y, et al. Inorganic Chemistry Frontiers, 2021, 8(16), 3926.
29 Geng S, Zhou T, Jia M, et al. Energy & Environmental Science, 2021, 14(5), 3184.
30 Touja J, Gabaudan V, Farina F, et al. Electrochimica Acta, 2020, 362, 137125
31 Liu P, Wang Y, Gu Q, et al. Advanced Materials, 2019, 32(7), 1906735.
32 Li S, Zhu H, Liu Y, et al. Nature Communications, 2022, 13(1), 4911.
33 Wang L, Wang H, Cheng M, et al. ACS Applied Energy Materials, 2021, 4(6), 6245.
34 Zhou R, Tan H, Gao Y, et al. Carbon, 2022, 186, 141.
35 Zhou Y, Tian S, Jia M Y, et al. Rare Metals, 2023, 42(8), 2622.
36 Tian S, Song Q, Zhang X, et al. Journal of Power Sources, 2023, 579, 233289.
37 Hu X, Zhong G, Li J, et al. Energy Environmental Science, 2020, 13(8), 2431.
38 Wang G Y, Wang X H, Sun J F, et al. Rare Metals, 2022, 41(11), 3706.
39 Huang X, Sun J, Wang L, et al. Small, 2021, 17(6), 2004369.
40 Lei Y J, Yang H L, Liang Y, et al. Advanced Energy Materials, 2022, 12(46), 2202523.
41 Jia M, Geng S, Jiang Q, et al. Journal of Materials Science, 2021, 56, 3911.
42 Zhao X, Hong Y, Cheng M, et al. Journal of Materials Chemistry A, 2020, 8(21), 10875.
43 Li D, Wang L, Cheng X, et al. Journal of Energy Chemistry, 2021, 62, 581.
44 Yao Y, Xu R, Chen M, et al. ACS Nano, 2019, 13(4), 4695.
45 Zhang L, Wang H, Zhang X, et al. Advanced Functional Materials, 2021, 31(20), 2010958.
46 Wang M, Tang Y. Advanced Energy Materials, 2018, 8(19), 1703320.
47 Zhang M, Shoaib M, Fei H, et al. Advanced Energy Materials, 2019, 9(37), 1901663.
48 Yu D, Luo W, Gu H, et al. Chemical Engineering Journal, 2023, 454, 139908.
[1] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[2] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[3] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[4] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[5] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[6] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[7] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[10] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[11] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[12] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[13] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[14] 朱昊, 李勇, 还大军. 短切CF/PEEK复合材料的制备及抗紫外老化性能[J]. 材料导报, 2024, 38(14): 23020237-6.
[15] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed