Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24020122-8    https://doi.org/10.11896/cldb.24020122
  无机非金属及其复合材料 |
静电纺丝电极材料在钾基储能器件中的应用
王腾腾, 魏晓童, 刘森, 田爽*, 周通*
山东理工大学物理与光电工程学院,山东 淄博 255049
Electrospun Electrode Materials for Potassium-based Energy Storage Devices
WANG Tengteng, WEI Xiaotong, LIU Sen, TIAN Shuang*, ZHOU Tong*
School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
下载:  全 文 ( PDF ) ( 19141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为新一代储能体系,钾基储能器件因钾资源丰富、成本低廉而受到广泛关注。然而,钾离子半径较大导致反应动力学缓慢,且在反复嵌入/脱出过程中电极材料易粉化。因此,寻找高效的电极材料是钾基储能器件发展的关键。具有一维长直特性的静电纺丝材料是构建自支撑或柔性电极的理想材料。本文归纳总结了静电纺丝碳纤维及其复合材料在微观结构调控和化学修饰等方面的研究进展,并阐释了功能化纺丝电极材料在钾离子电池、钾金属电池、钾离子混合电容器、钾硫(硒)电池和钾基双离子电池等钾基储能器件中的应用。此外,还讨论了该领域未来发展所面临的挑战和机遇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王腾腾
魏晓童
刘森
田爽
周通
关键词:  静电纺丝  碳纤维  电极材料  钾基储能器件    
Abstract: As a new generation of energy storage system, potassium-based energy storage device has received much attention due to the abundant potassium resources and low cost. However, the large radius of potassium ions leads to slow reaction kinetics and pulverization of the electrode material during repeated insertion/extraction processes. Therefore, finding efficient electrode materials is the key to the development of potassium-based energy storage devices. Electrospun materials with one-dimensional long straight properties are ideal for building self-supporting or flexible electrodes. This paper summarizes the research progress of electrospun carbon fibers and their composites in terms of microstructure modulation and chemical modification and elucidates the application of functionalized electrospun electrode materials in potassium-based energy storage devices, such as potassium-ion batteries, potassium-metal batteries, potassium-ion hybrid capacitors, potassium-sulfur (selenium) batteries, and potassium-based dual-ion batteries. In addition, challenges and opportunities for the future development of the field are discussed.
Key words:  electrostatic spinning    carbon fiber    electrode material    potassium-based energy storage device
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TB324  
  TQ316.3  
基金资助: 国家自然科学基金(22378237)
通讯作者:  *田爽,博士,讲师,硕士研究生导师,主要从事钾离子电池及电容器关键电极材料研究。tianshuang@sdut.edu.cn; 周通,博士,教授,博士研究生导师,山东省高校“青创计划”团队—新型储能材料与器件创新团队负责人,山东省优秀硕士学位论文指导教师。目前主要从事电化学储钾材料与器件应用基础研究。zhoutong@sdut.edu.cn   
作者简介:  王腾腾,硕士研究生,于山东理工大学物理与光电工程学院攻读硕士学位,师从周通教授和田爽博士,主要从事钾离子电容器正负极材料的研究。
引用本文:    
王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
WANG Tengteng, WEI Xiaotong, LIU Sen, TIAN Shuang, ZHOU Tong. Electrospun Electrode Materials for Potassium-based Energy Storage Devices. Materials Reports, 2025, 39(9): 24020122-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020122  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24020122
1 Zhang H, Meng G, Liu Q, et al. Small, 2023, 19(48), 2303165.
2 Chen S, Xin Y, Zhou Y, et al. Energy Environmental Science, 2014, 7(6), 1924.
3 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928.
4 He T, Feng J, Ru J, et al. ACS Nano, 2018, 13(1), 830.
5 Zuo W P, Zhou J E, Chen Y Y, et al. Materials Research and Application, 2024, 18(6), 866(in Chinese).
左卫朋, 周健恩, 陈跃颖, 等. 材料研究与应用, 2024, 18(6), 866.
6 Zhan J Q, Xing L D. Materials Research and Application, 2023, 17(5), 902(in Chinese).
占佳琦, 邢丽丹. 材料研究与应用, 2023, 17(5), 902.
7 Wang J, Yang N, Tang H, et al. Angewandte Chemie International Edition, 2013, 52(25), 6417.
8 Jagadale A, Zhou X, Xiong R, et al. Energy Storage Materials, 2019, 19, 314.
9 Christensen J, Albertus P, Sanchez-Carrera R S, et al. Journal of the Electrochemical Society, 2011, 159(2), R1.
10 Boaretto N, Garbayo I, Valiyaveettil-Sobhan R S, et al. Journal of Power Sources, 2021, 502, 229919.
11 Eftekhari A. Sustainable Energy & Fuels, 2017, 1(1), 14.
12 Wu Y, Wu P, Tang Y, et al. Advanced Functional Materials, 2024, 34(17), 2314344.
13 Wu Y, Wu X, Guan Y, et al. New Carbon Materials, 2022, 37(5), 852.
14 Zhang W, Liu Y, Guo Z. Science Advances, 2019, 5(5), eaav7412.
15 He H, Huang D, Tang Y, et al. Nano Energy, 2019, 57, 728.
16 Xu S, Li Z, Wei G, et al. Journal of Materials Chemistry A, 2022, 10(36), 18812.
17 Xia Y, Yang P, Sun Y, et al. Advanced Materials, 2003, 15(5), 353.
18 Jiang Z W, Liu C K, Wu H, et al. Materials Reports, 2023, 37(5), 21040283 (in Chinese).
江志威, 刘呈坤, 吴红, 等. 材料导报, 2023, 37(5), 21040283.
19 Xu C, Mu J, Zhou T, et al. Advanced Functional Materials, 2022, 32(38), 2206501.
20 Hosaka T, Kubota K, Hameed A S, et al. Chemical Reviews, 2020, 120 (14), 6358.
21 Xu Y, Du Y, Chen H, et al. Chemical Society Reviews, 2024, 53(13), 7202.
22 Liu C K, Lai K, Liu W, et al. Polymer International, 2009, 58(12), 1341.
23 He H, Huang D, Tang Y, et al. Nano Energy, 2019, 57, 728.
24 Lin X, Huang J, Zhang B. Carbon, 2019, 143, 138.
25 Liu F, Meng J, Xia F, et al. Journal of Materials Chemistry A, 2020, 8(35), 18079.
26 Chen L, Lin X, Gao J, et al. Electrochimica Acta, 2022, 403, 139654.
27 Hu X, Zhong G, Li J, et al. Energy & Environmental Science, 2020, 13(8), 2431.
28 Niu P, Wang P, Xu Y, et al. Inorganic Chemistry Frontiers, 2021, 8(16), 3926.
29 Geng S, Zhou T, Jia M, et al. Energy & Environmental Science, 2021, 14(5), 3184.
30 Touja J, Gabaudan V, Farina F, et al. Electrochimica Acta, 2020, 362, 137125
31 Liu P, Wang Y, Gu Q, et al. Advanced Materials, 2019, 32(7), 1906735.
32 Li S, Zhu H, Liu Y, et al. Nature Communications, 2022, 13(1), 4911.
33 Wang L, Wang H, Cheng M, et al. ACS Applied Energy Materials, 2021, 4(6), 6245.
34 Zhou R, Tan H, Gao Y, et al. Carbon, 2022, 186, 141.
35 Zhou Y, Tian S, Jia M Y, et al. Rare Metals, 2023, 42(8), 2622.
36 Tian S, Song Q, Zhang X, et al. Journal of Power Sources, 2023, 579, 233289.
37 Hu X, Zhong G, Li J, et al. Energy Environmental Science, 2020, 13(8), 2431.
38 Wang G Y, Wang X H, Sun J F, et al. Rare Metals, 2022, 41(11), 3706.
39 Huang X, Sun J, Wang L, et al. Small, 2021, 17(6), 2004369.
40 Lei Y J, Yang H L, Liang Y, et al. Advanced Energy Materials, 2022, 12(46), 2202523.
41 Jia M, Geng S, Jiang Q, et al. Journal of Materials Science, 2021, 56, 3911.
42 Zhao X, Hong Y, Cheng M, et al. Journal of Materials Chemistry A, 2020, 8(21), 10875.
43 Li D, Wang L, Cheng X, et al. Journal of Energy Chemistry, 2021, 62, 581.
44 Yao Y, Xu R, Chen M, et al. ACS Nano, 2019, 13(4), 4695.
45 Zhang L, Wang H, Zhang X, et al. Advanced Functional Materials, 2021, 31(20), 2010958.
46 Wang M, Tang Y. Advanced Energy Materials, 2018, 8(19), 1703320.
47 Zhang M, Shoaib M, Fei H, et al. Advanced Energy Materials, 2019, 9(37), 1901663.
48 Yu D, Luo W, Gu H, et al. Chemical Engineering Journal, 2023, 454, 139908.
[1] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[2] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[3] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[4] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[5] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[6] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[7] 胡文龙, 杨露露, 苗磊, 黄频波, 张树正, 赵志博, 仓钰, 杨斌. 基于金属多酚网络的碳纤维表面改性及其增强环氧树脂复合材料界面性能[J]. 材料导报, 2025, 39(17): 24070023-6.
[8] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[9] 陈飞勇, 刘坤, 李文祚, 陈倩勋, 李淑英, 宋扬. 静电纺丝纤维材料在太阳能海水淡化领域的应用进展[J]. 材料导报, 2025, 39(14): 24060040-8.
[10] 王志航, 白二雷, 刘俊良, 周俊鹏, 任彪. 碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展[J]. 材料导报, 2025, 39(13): 24030248-9.
[11] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[12] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[13] 龙学莉, 陆赵情, 王阮玉, 贾峰峰, 李思齐, 黄涛, 徐明源. 碳纤维长度对碳纤维纸基材料电磁屏蔽性能影响分析[J]. 材料导报, 2025, 39(11): 24030236-8.
[14] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[15] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[9] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
[10] CHEN Tao, XUE Songbai, SUN Zijian, ZHAI Peizhuo, CHEN Weizhong, GUO Peipei. Short-circuit Transition Control Technology for CO2 Gas Shielded Welding: Research Status and Prospect[J]. Materials Reports, 2019, 33(9): 1431 -1442 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed