Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24020011-7    https://doi.org/10.11896/cldb.24020011
  无机非金属及其复合材料 |
冻干法制备石墨烯负载二硫化钼及其润滑性能研究
彭润玲*, 王威, 刘锦悦, 高展, 郭俊德, 张耿
西安工业大学机电工程学院,西安 710021
Study on Preparation of Graphene-loaded Molybdenum Disulfide by Freeze-Drying Method and Its Lubrication Performance
PENG Runling*, WANG Wei, LIU Jinyue, GAO Zhan, GUO Junde, ZHANG Geng
School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 28293KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了可控制备石墨烯(RGO)和二硫化钼(MoS2)的润滑油纳米添加剂,进一步提高其宽温域下的润滑性能,采用冷冻干燥法一步制备了石墨烯负载二硫化钼(RGO/MoS2)纳米颗粒,利用扫描电子显微镜(SEM)及X射线衍射仪(XRD)观测其微观形貌和结构,通过正交实验探究工艺参数与RGO/MoS2微观尺寸的关联性,研究了RGO/MoS2在不同温度下的减摩抗磨性能。结果表明:冷冻干燥法制备的RGO/MoS2纳米颗粒中MoS2呈纳米花球状均匀吸附在RGO表面的缺陷位置,且薄片相互重叠,具有较优的分散稳定性。影响RGO/MoS2中MoS2片层厚度的因素排序为冻结方式>反应温度>反应时长>反应pH值,较优的制备方式为-20 ℃冻结、反应温度180 ℃、反应时长24 h、反应pH值为1。RGO/MoS2作为润滑油添加剂在高温下具有比MoS2单剂更好的减摩抗磨性能,添加1.5%(质量分数,下同)的RGO/MoS2作为润滑油添加剂后,在250 ℃高温工况下平均摩擦系数和磨损率分别仅为0.062 5和2.95×10-9 cm3/(N·m),相比MoS2单剂分别降低54.3%和74.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭润玲
王威
刘锦悦
高展
郭俊德
张耿
关键词:  冷冻干燥  石墨烯  二硫化钼  摩擦磨损  润滑油添加剂    
Abstract: In order to control the preparation of graphene and molybdenum disulfide lubricating oil nanoadditives and further improve their wide-temperature-range lubrication performance, graphene loaded molybdenum disulfide (RGO/MoS2) nanoparticles were prepared via a one-step freeze-drying method. The microstructure and morphology of the nanoparticles were observed by means of scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The correlation between process parameters and the microstructure of RGO/MoS2 was explored through ortho-gonal experiments, and the anti-friction and anti-wear performance of RGO/MoS2 at different temperatures was studied. The results showed that the nanoflower-like spherical RGO/MoS2 nanoparticles prepared by freeze-drying method uniformly adsorbed on the defect positions on the RGO surface with its thin sheets overlapped with each other, hence exhibited excellent dispersion and stability performance. The factors affecting the thickness of MoS2 layers in RGO/MoS2 could be sorted as: freezing method > reaction temperature > reaction time > reaction pH value. The optimal preparation conditions determined included:-20 ℃ freezing, reaction temperature 180 ℃, reaction time 24 h, and reaction pH=1. RGO/MoS2 as a lubricating oil additive has better friction reduction and wear resistance than MoS2 single agent at high temperatures. The addition of 1.5wt% RGO/MoS2 as a lubricating oil additive could achieve an average friction coefficient and a wear rate of only 0.062 5 and 2.95×10-9 cm3/(N·m), respectively, under high temperature conditions of 250 ℃, 54.3% and 74.5% lower than those acquired by MoS2 single agent.
Key words:  freeze-drying    graphene    molybdenum disulfide    friction and wear    lubricating oil additive
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TB117  
基金资助: 国家自然科学基金(52175113);陕西省科技计划项目(2022GY-214);陕西省自然科学基础研究项目(2022JQ-986)
通讯作者:  彭润玲,工学博士,西安工业大学机电工程学院副教授、硕士研究生导师。主要从事冷冻干燥、纳米材料、纳米摩擦学、微尺度传热传质、计算流体力学的研究。pengrunling@163.com   
引用本文:    
彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
PENG Runling, WANG Wei, LIU Jinyue, GAO Zhan, GUO Junde, ZHANG Geng. Study on Preparation of Graphene-loaded Molybdenum Disulfide by Freeze-Drying Method and Its Lubrication Performance. Materials Reports, 2025, 39(8): 24020011-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020011  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24020011
1 Zhou J F, Wu Z S, Zhang Z J, et al. Wear, 2001, 249(5-6), 333.
2 Fan Z R, Kong Y Y, Li Y H, et al. Journal of Synthetic Crystals, 2019, 48(7), 1190 (in Chinese).
樊子冉, 孔洋洋, 李宇豪, 等. 人工晶体学报, 2019, 48(7), 1190.
3 Yan R, Wo X Y, Wang Y, et al. Materials Reports, 2023, 37(15), 67 (in Chinese).
颜睿, 沃虓野, 王豫, 等. 材料导报, 2023, 37(15), 67.
4 Li J H, Zhu Y D, Zhang Y M, et al. Chinese Journal of Chemical Engineering, 2018, 26(12), 2412.
5 Zhang S S, Zhao J G, Zhang J, et al. CIESC Journal, 2018, 69(10), 4479 (in Chinese).
张姗姗, 赵建国, 张进, 等. 化工学报, 2018, 69(10), 4479.
6 Singh E, Kim K S, Yeom G Y, et al. ACS Applied Materials & Interfaces, 2017, 9(4), 3223.
7 Xiang S, Lu P, Shi W N, et al. Chemical Industry and Engineering Progress, 2023, 42(9), 4783 (in Chinese).
向硕, 卢鹏, 石伟年, 等. 化工进展, 2023, 42(9), 4783.
8 Deng H, Guo Y L, He F F, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(8), 626.
9 Wu J M, Chang W E, Chang Y T, et al. Advanced Materials, 2016, 28(19), 3718.
10 Tsai D S, Liu K K, Lien D H, et al. ACS Nano, 2013, 7(5), 3905.
11 Splendiani A, Sun L, Zhang Y B, et al. Nano Letters, 2010, 10(4), 1271.
12 Cai J W, Feng K Q, Wang H B, et al. Materials Reports, 2024, 38(1), 158 (in Chinese).
蔡锦文, 冯可芹, 王海波, 等. 材料导报, 2024, 38(1), 158.
13 Guo J D, Peng R L, Du H, et al. Nanomaterials, 2020, 10(2), 200.
14 Mei T J, Guo J D, Tong Z, et al. Journal of Xi'an Jiaotong University, 2019, 53(2), 24 (in Chinese).
梅堂杰, 郭俊德, 仝哲, 等. 西安交通大学学报, 2019, 53(2), 24.
15 Zhao J X, Dai L Y, Wei Y K, et al. Materials Reports, 2024, 38(2), 238 (in Chinese).
晁昀暄, 戴乐阳, 魏钰坤, 等. 材料导报, 2024, 38(2), 238.
16 Ba Z W, Huang G W, Qiao D, et al. Friction, 2019, 39(2), 140 (in Chinese).
巴召文, 黄国威, 乔旦, 等. 摩擦学学报, 2019, 39(2), 140.
17 Gupta D, Chauhan V, Kumar R. Inorganic Chemistry Communications, 2020, 121, 108200.
18 Windom B C, Sawyer W G, Hahn D W. Tribology Letters, 2011, 42, 301.
19 Bai G L, Wu Z Z. Lubrication Engineering, 2013, 38(4), 93.
20 Vellore A, Romero Garcia S, Johnson D A, et al. Tribology Letters, 2021, 69, 1.
21 Zhang L N, Tan X F, Jiao J G, et al. Friction, 2024, 12(1), 110.
22 Zhang S T, Zhao H C, Qiao Y L. Materials Reports, 2019, 32(24), 4235 (in Chinese).
张世堂, 赵海朝, 乔玉林. 材料导报, 2019, 32(24), 4235.
23 Qin J, Liu T X, Wang J, et al. Chemical Industry and Engineering Progress, 2022, 41(9), 4973 (in Chinese).
秦建, 刘天霞, 王建, 等. 化工进展, 2022, 41(9), 4973.
24 Xu Y F, Geng J, Peng Y B, et al. Tribology International, 2018, 121, 241.
25 He J Q, Sun J L, Choi J, et al. Friction, 2023, 11(3), 441.
26 Peng R L, Wang W, Wang P, et al. Lubrication Science, 2023, 35(4), 270.
27 Wang L F, Ma T B, Hu Y Z, et al. Nanotechnology, 2014, 25(38), 385701.
28 Hou K M, Wang J Q, Yang Z G, et al. Carbon, 2017, 115, 83.
29 Liu S W, Wang H P, Xu Q, et al. Nature Communications, 2017, 8(1), 14029.
30 Wang L, Tieu A K, Ma M, et al. Friction, 2022, 10(11), 1810.
31 Xue S Q, Li H L, Guo Y M, et al. Friction, 2022, 10(7), 977.
32 Fu J G, Li S Y, Ma S L, et al. Science Technology and Engineering, 2019, 19(11), 110 (in Chinese).
付景国, 李思远, 马圣林, 等. 科学技术与工程, 2019, 19(11), 110.
33 Shi Y M, Li H N, Wong J I, et al. Scientific Reports, 2015, 5(1), 10378.
34 Bahuguna A, Kumar S, Sharma V, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 8551.
35 Meng X Y, Yu L, Ma C, et al. Nano Energy, 2019, 61, 611.
36 Peng R L, Yin S S, Wei Y, et al. Vacuum, 2019, 56(5), 77 (in Chinese).
彭润玲, 尹沙沙, 韦妍, 等. 真空, 2019, 56(5), 77.
37 Cao X, Shang Y P, Meng K J, et al. Journal of Energetic Materials, 2019, 37(3), 356.
38 Zhang F, Ma X Y, Wu X S, et al. Drying Technology, 2020, 38(1-2), 71.
39 Hu W Q, Dong Z, Wang H, et al. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105453.
40 Peng R L, Guo J D, Han S X, et al. Materials Research Express, 2020, 7(2), 025028.
[1] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[2] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[3] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[4] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[5] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[6] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[7] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[8] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[9] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[10] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[11] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[12] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[13] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[14] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[15] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed