Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24020115-8    https://doi.org/10.11896/cldb.24020115
  金属与金属基复合材料 |
具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展
程焱1,2, 张弦1,2,*, 苏志诚2, 刘静1,2, 吴开明1,2
1 武汉科技大学理学院应用物理系,武汉 430081
2 武汉科技大学耐火材料与冶金省部共建重点实验室,高性能钢铁材料及其应用省部共建协同创新中心,武汉 430081
Research Progress in Mechanical Properties and Corrosion Behavior of Advanced High-strength Steels with TRIP Effect
CHENG Yan1,2, ZHANG Xian1,2,*, SU Zhicheng2, LIU Jing1,2, WU Kaiming1,2
1 Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
2 The State Key Laboratory of Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 20876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 先进高强度钢(AHSS)以其出色的力学性能在汽车、航空航天及海洋工程等领域展示了巨大的潜力,伴随着它们的广泛使用,其在海洋环境中的腐蚀行为成为限制其发展应用的因素。近年来研究者对AHSS的力学性能和腐蚀行为进行了深入分析,在AHSS的微观组织演变、力学性能提升和腐蚀行为调控策略等方面展开了系统的实验和理论研究,发现TRIP效应对力学性能及腐蚀行为都有影响。本文归纳整理了典型的第三代AHSS的特点及发展概况;综述了AHSS在海洋环境中的力学性能以及腐蚀行为的研究进展;总结出TRIP效应一般可以提高AHSS的力学性能,但同时可能会引发局部应力集中和应力腐蚀开裂,降低钢材的耐腐蚀性能。文末提出了腐蚀防护措施,并对未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程焱
张弦
苏志诚
刘静
吴开明
关键词:  先进高强度钢  海洋环境  腐蚀行为  力学性能  TRIP效应    
Abstract: Advanced high-strength steel has demonstrated tremendous potential in fields such as automotive, aerospace, and marine engineering due to its excellent mechanical properties. However, with the widespread use of advanced high-strength steel, its corrosion behavior in marine environments has become a factor restraining its development and application. Consequently, in recent years, researchers have conducted in-depth analyses of the mechanical properties and corrosion behavior of advanced high-strength steel. They have carried out systematic experimental and theoretical studies on microstructural evolution, mechanical property enhancement, and corrosion behavior control strategies. It has been found that the transformation-induced plasticity (TRIP) effect has a significant impact on both the mechanical properties and corrosion behavior. This paper summarizes the characteristics and development overview of typical third-generation advanced high-strength steel, reviews the research progress on the mechanical properties and corrosion behavior of advanced high-strength steel in marine environments. It concludes that the TRIP effect generally improves the mechanical properties of advanced high-strength steel but may simultaneously induce local stress concentration and stress corrosion cracking, thereby reducing the corrosion resistance of steel. It ends with a proposal of the corrosion protection measures, and a discussion on the future trends.
Key words:  advanced high-strength steel    marine environment    corrosion behavior    mechanical property    TRIP effect
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TG142  
基金资助: 武汉市科学技术局知识创新专项(20220108101020316);广东省基础与应用基础研究基金(2023A1515240085)
通讯作者:  张弦,博士,武汉科技大学副教授、硕士研究生导师。主要研究方向为金属材料在苛刻环境下的腐蚀机理及防护措施。xianzhang@wust.edu.cn   
作者简介:  程焱,2022年6月毕业于佳木斯大学,获得理学学士学位。现为武汉科技大学理学院硕士研究生,在张弦副教授的指导下进行研究。目前主要研究领域为中锰钢腐蚀行为的第一性原理研究。
引用本文:    
程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
CHENG Yan, ZHANG Xian, SU Zhicheng, LIU Jing, WU Kaiming. Research Progress in Mechanical Properties and Corrosion Behavior of Advanced High-strength Steels with TRIP Effect. Materials Reports, 2025, 39(8): 24020115-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020115  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24020115
1 Soleimani M, Kalhor A, Mirzadeh H. Materials Science and Engineering A, 2020, 795, 140023.
2 Yi H L. JOM, 2014, 66(9), 1759.
3 Li Y J, Guo Y, Li L L, et al. Science, 2023, 379(6628), 168.
4 Wang M M, Ma F, Pei W C, et al. Heat Treatment of Metals, 2022, 47(9), 272 (in Chinese).
王明明, 马飞, 裴未迟, 等. 金属热处理, 2022, 47(9), 272.
5 Wang C Y, Chang Y, Zhou F L, et al. Acta Metallurgica Sinica, 2020, 56(4), 400 (in Chinese).
王存宇, 常颖, 周峰峦, 等. 金属学报, 2020, 56(4), 400.
6 Hu B, Luo H W, Yang F, et al. Journal of Materials Science and Technology, 2017, 33(12), 1457.
7 Speer J, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611.
8 Hu B, Luo H. Acta Materialia, 2019, 176, 250.
9 Ding R, Dai Z, Huang M, et al. Acta Materialia, 2018, 147, 59.
10 Xu Y B, Hu Z P, Zou Y, et al. Materials Science and Engineering A, 2017, 688, 40.
11 Matlock D K, Brautigam V E, Speer J G. Materials Science Forum, 2003, 426(4), 1089.
12 Du J L, Feng Y L, Zhang Y L, et al. Materials Reports, 2021, 35(15), 15189 (in Chinese).
杜金亮, 冯运莉, 张颖隆, 等. 材料导报, 2021, 35(15), 15189.
13 Gerdemann F L H, Speer J G. Materials Science and Technology, 2004, 20, 439.
14 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Materials Science and Technology, 2002, 18, 279.
15 Feng Y P, Zhang X, Wu K M, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(5), 602 (in Chinese).
冯彦朋, 张弦, 吴开明, 等. 中国腐蚀与防护学报, 2021, 41(5), 602.
16 Yang B S. Hydrogen diffusion behavior in an ultra-fine bainite steel. Master's Thesis, Wuhan University of Science and Technology, China, 2021 (in Chinese).
杨帮树. 超细贝氏体钢中氢扩散行为研究. 硕士学位论文, 武汉科技大学, 2021.
17 Tian J Y, Xu G, Zhou M X, et al. Steel Research International, 2018, 89, 1700469.
18 Gao G H, Guo H R, Gui X L, et al. Materials Science and Engineering A, 2018, 736, 298.
19 Tran M T, Nguyen X M, Kim H, et al. International Journal of Plasticity, 2023, 171, 103812.
20 Liu C Q. Study on microstructure, mechanical property control and austenite stability of high strength and high plasticity medium manganese steel. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2020 (in Chinese).
刘春泉. 高强高塑性中锰钢组织性能调控及奥氏体稳定性研究. 博士学位论文, 武汉科技大学, 2020.
21 Han Y, Shi J, Xu L, et al. Materials Science & Engineering A, 2011, 530, 643.
22 Matlock D K, Speer J G, De Moor E, et al. Engineering Science and Technology, 2012, 15(1), 1.
23 Feng R, Zhang M H, Chen N L, et al. Acta Metallurgica Sinica, 2014, 50(4), 498 (in Chinese).
冯瑞, 张美汉, 陈乃录, 等. 金属学报, 2014, 50(4), 498.
24 Zhang K, Zhang M, Guo Z, et al. Materials Science & Engineering A, 2011, 528(29), 8486.
25 Webster D. ASM Transactions Quarterly, 1968, 61, 816.
26 Park J, Jo M C, Jeong H J, et al. Scientific Reports, 2017, 7(1), 15726.
27 He Z, Liu H, Zhu Z, et al. Materials (Basel), 2019, 12(22), 3781.
28 Skowronek A, Grajcar A, Kunio A, et al. Materials (Basel), 2020, 13(11), 2433.
29 He B. Materials (Basel), 2020, 13(15), 3440.
30 Zeng L, Song X, Chen N, et al. Materials Science and Engineering A, 2022, 857, 143742.
31 HajyAkbary F, Sietsma J, Petrov R H, et al. Scripta Materialia, 2017, 137, 27.
32 Shen Y F, Dong X X, Song X T, et al. Scientific Reports, 2019, 9(1), 7559.
33 Bi N, Tang H, Shi Z, et al. Materials (Basel), 2023, 16(6), 2220.
34 Wang N. Research on metal local corrosion damage evolution based on cellular automata method. Master's Thesis, Civil Aviation University of China, China, 2019 (in Chinese).
王宁. 基于元胞自动机法的金属局部腐蚀损伤演化研究. 硕士学位论文, 中国民航大学, 2019.
35 Sezer N, Evis Z, Kayhan S M, et al. Journal of Magnesium and Alloys, 2018, 6(1), 23.
36 Shi W L, Li H X, Kunio A, et al. Acta Biomaterialia, 2021, 131, 572.
37 Wu H, Jiang Y, You S S, et al. Journal of Mechanical Engineering, 2014, 50(22), 69 (in Chinese).
吴化, 姜颖, 尤申申, 等. 机械工程学报, 2014, 50(22), 69.
38 Wilson H, Farshid P, Rumana H, et al. Manufacturing and Materials Processing, 2019, 3(3), 55.
39 Chen H, Guo X Z, Chu W Y, et al. Materials Science and Engineering A, 2003, 358, 122.
40 Park I, Lee S, Lee Y, et al. Journal of Alloys and Compounds, 2015, 619, 205.
41 Bosch J, Martin U, Aperador W, et al. Materials (Basel), 2021, 14(2), 425.
42 Pan M, Zhang J, Zhang X, et al. Materials Science and Engineering A, 2022, 857, 144095.
43 Wei J, Dong J, Zhou Y, et al. Materials Characterization, 2018, 139, 401.
44 Chen H, Lv Z, Lu L, et al. Journal of Materials Research and Technology, 2021, 15, 3310.
45 Li Q, Yao Q, Sun L, et al. International Journal of Fatigue, 2023, 170, 107568.
46 Wei J, Liu H, He X Y, et al. In: Conference Record of the 11th National Conference on Corrosion and Protection. China, 2021, pp. 137.
47 Wu W, Hao W, Liu Z Y, et al. Construction and Building Materials, 2020, 239, 117903.
48 Handoko W, Pahlevani F, Hossain R, et al. Journal of Manufacturing and Materials Processing, 2019, 3(3), 55.
49 Xu X X, Cheng H L, Wu W, et al. Corrosion Science, 2021, 191, 109760.
50 Park S, Kim J G, Jung I D, et al. Acta Materialia, 2022, 239, 118291.
51 Ma H C. SCC Behaviors of E690 steel and welded joint in thin electrolyte layer containing sulfur dioxide. Ph. D. Thesis, University of Science and Technology Beijing, China, 2016 (in Chinese).
马宏驰. E690钢及焊接接头在含硫薄液环境中的应力腐蚀行为研究. 博士学位论文, 北京科技大学, 2016.
52 Lin Z H, Ming N X, He C, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(3), 307 (in Chinese).
林朝晖, 明南希, 何川, 等. 中国腐蚀与防护学报, 2021, 41(3), 307.
53 Kan B. Investigation of stress-induced hydrogen diffusion and hydrogen-induced cracking in marine steels. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
阚博. 海工用钢的应力诱导氢扩散及氢致开裂研究. 博士学位论文, 北京科技大学, 2020.
54 Pidaparti R M, Rao A S. Corrosion Science, 2008, 50(7), 1932.
55 Ali N. B, Tanguy D, Estevez R, et al. Scripta Materialia, 2011, 65(3), 210.
56 Zhang F, Örnek C, Nilsson J O, et al. Corrosion Science, 2020, 164, 108319.
57 Dong X X, Shen Y F. Materials Science and Engineering A, 2022, 852, 143737.
58 Li Z X, Zhang L M, Udoh I I, et al. Tribology International, 2022, 167, 107422.
59 Zhu X. An Investigation into the hydrogen embrittlement mechanism in the 3rd generation advanced high strength automotive steels employing TRIP effect. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinese).
朱旭. 基于TRIP效应的第3代先进高强汽车用钢氢脆机制的研究. 博士学位论文, 上海交通大学, 2016.
60 Papula S, Sarikka T, Anttila S, et al. Materials (Basel), 2017, 10(6), 613.
61 Yang X, Yu H, Song C, et al. Materials (Basel), 2021, 14(24), 7752.
[1] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[2] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[3] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[4] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[7] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[8] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[9] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[10] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[11] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[12] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[13] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[14] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[15] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed