Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24020130-6    https://doi.org/10.11896/cldb.24020130
  金属与金属基复合材料 |
预处理条件对QP980钢组织及塑性失稳行为的影响
张鹏1, 李兵1,*, 徐飞越1, 汪锐杰1, 王敏1,2
1 湖北汽车工业学院材料科学与工程学院,湖北 十堰 442002
2 湖北隆中实验室,湖北 襄阳 441000
Effect of Pretreatment Conditions on Microstructure and Plastic Instability Behavior of QP980 Steel
ZHANG Peng1, LI Bing1,*, XU Feiyue1, WANG Ruijie1, WANG Min1,2
1 College of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, Hubei, China
2 Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, Hubei, China
下载:  全 文 ( PDF ) ( 25074KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吕德斯应变的存在会显著影响先进高强钢的冲压成形性能。本工作通过合理设计预处理条件对QP980钢的微观组织及塑性失稳行为进行分析研究。结果表明:经过预应变(4%)和热处理(300 ℃/10 min)后,能显著提升QP980钢的强度性能。在综合延伸率仅降低2.9%的前提下,抗拉强度值提升150 MPa,屈服强度值增加466 MPa。这得益于回火过程中过渡碳化物的弥散强化以及相变诱导塑性效应。此外,经预应变和回火热处理后的QP980钢呈现出了明显的吕德斯应变特征。通过分离预处理条件进行对比研究发现:残余奥氏体的稳定性是影响QP980钢是否发生吕德斯应变的主要因素,预应变和回火过程皆会消耗掉部分不稳定残余奥氏体。在残余奥氏体稳定性过高时,这意味着较小应变条件下相变诱导塑性效应不易发生,此时塑性失稳现象容易出现,拉伸变形过程中会产生吕德斯带。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏
李兵
徐飞越
汪锐杰
王敏
关键词:  QP980  相变诱导塑性效应  预应变  吕德斯应变  残余奥氏体稳定性    
Abstract: The impact of Lüders strain on the formability of advanced high strength steels is significant. In this work, through a well-designed set of preconditioning conditions, the microstructure and plastic instability behavior of QP980 steel was examined. The findings reveal that prestraining (4%) and subsequent heat treatment (300 ℃/10 min) can greatly enhance the strength properties of QP980 steel. Despite a slight reduction of only 2.9% in comprehensive elongation, the tensile strength value acquires a remarkable increase of 150 MPa and the yield strength value rises by 466 MPa. These improvements are attributed to the diffusion strengthening of transition carbides and the plastic effect induced by phase change during tempering. Moreover, QP980 steel treated with pre-strain and tempering exhibits distinct Lüders strain characteristics. The study identifies the stability of residual austenite as a key factor influencing the occurrence of Lüders strain in QP980 steel, with some unstable residual austenite being eliminated during the pre-strain and tempering process. Excessive stability of residual austenite hinders the plastic effect induced by phase change under low strain conditions, leading to plastic instability and the formation of Lüders bands during tensile deformation.
Key words:  QP980    TRIP effect    pre-strain    Lüders strain    retained austenite stability
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TG142.1  
基金资助: 湖北隆中实验室自主创新项目资助(2022ZZ-30);湖北省重点研发计划(2021BAB019);大学生创新创业训练计划项目(S202310525032)
通讯作者:  李兵,硕士,湖北汽车工业学院材料科学与工程学院副教授、硕士研究生导师。目前主要从事汽车轻量化成形技术及装备等方面的研究工作。20090018@huat.edu.cn   
作者简介:  张鹏,硕士,现为湖北汽车工业学院材料科学与工程学院助理实验师。目前主要研究领域为汽车轻量化材料的成形及制备技术。
引用本文:    
张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
ZHANG Peng, LI Bing, XU Feiyue, WANG Ruijie, WANG Min. Effect of Pretreatment Conditions on Microstructure and Plastic Instability Behavior of QP980 Steel. Materials Reports, 2025, 39(8): 24020130-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020130  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24020130
1 Li G G, Liu X L. Materials Science and Technology, 2020, 28(5), 47(in Chinese).
李光霁, 刘新玲. 材料科学与工艺, 2020, 28(5), 47.
2 Lin F M, Xing M, Tang L Z, et al. Materials Reports, 2023, 37(5), 162(in Chinese).
林方敏, 邢梅, 唐立志, 等. 材料导报, 2023, 37(5), 162.
3 He J, Han G, Li S, et al. International Journal of Mechanical Sciences, 2019, 152, 198.
4 Cheng X, Gui X L, Gao G H. Materials Reports, 2023, 37(7), 120(in Chinese).
程瑄, 桂晓露, 高古辉. 材料导报, 2023, 37(7), 120.
5 Ariza-Echeverri E A, Masoumi M, Nishikawa A S, et al. Materials & Design, 2020, 186, 108329.
6 Ding H, Zhang Y, Cai M H, et al. Acta Metallurgica Sinica, 2023, 59(8), 1027(in Chinese).
丁桦, 张宇, 蔡明晖, 等. 金属学报, 2023, 59(8), 1027.
7 Sohrabi M J, Naghizadeh M, Mirzadeh H. Archives of Civil and Mechanical Engineering, 2020, 20(4), 124.
8 Liu L, He B, Huang M. Advanced Engineering Materials, 2018, 20(6), 1701083.
9 Soleimani M, Kalhor A, Mirzadeh H. Materials Science and Engineering: A, 2020, 795, 140023.
10 Wang Y, Zhang M, Cen Q, et al. Materials Science and Engineering: A, 2022, 839, 142849.
11 Hu B, Tu X, Wang Y, et al. Chinese Journal of Engineering, 2020, 42(1), 48(in Chinese).
胡斌, 屠鑫, 王玉, 等. 工程科学学报, 2020, 42(1), 48.
12 Zhang Y, Ding H. Materials Science and Engineering: A, 2018, 733, 220.
13 Wang X, Huang M. Journal of Iron and Steel Research International, 2017, 24(11), 1073.
14 Hu B, He B B, Cheng G J, et al. Acta Materialia, 2019, 174, 131.
15 Seo E J, Cho L, De Cooman B C. Metallurgical and Materials Transactions A, 2015, 46(1), 27.
16 Zhao Z Z, Liang J H, Zhao A M, et al. Journal of Alloys and Compounds, 2017, 691, 51.
17 Cho L, Seo E J, De Cooman B C. Scripta Materialia, 2016, 123, 69.
18 Han J, Lee S J, Jung J G, et al. Acta Materialia, 2014, 78, 369.
19 Li Z C, Ding H, Misra R D K, et al. Materials Science and Engineering: A, 2017, 679, 230.
20 Zhang S L, Zhou W, Hu F, et al. Iron and Steel, 2023, 58(2), 113(in Chinese).
张绍龙, 周雯, 胡锋, 等. 钢铁, 2023, 58(2), 113.
21 Santofimia M J, Zhao L, Petrov R, et al. Materials Characterization, 2008, 59(12), 1758.
22 Wang J, Van Der Zwaag S. Metallurgical and Materials Transactions A, 2001, 32(6), 1527.
[1] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[2] 李辉, 陈家泳, 段晓鸽, 江海涛. 中锰Q&P钢残余奥氏体的稳定性及其TRIP效应[J]. 《材料导报》期刊社, 2018, 32(4): 611-615.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[9] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[10] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed