Research Progress in Mechanical Properties and Corrosion Behavior of Advanced High-strength Steels with TRIP Effect
CHENG Yan1,2, ZHANG Xian1,2,*, SU Zhicheng2, LIU Jing1,2, WU Kaiming1,2
1 Department of Applied Physics, College of Science, Wuhan University of Science and Technology, Wuhan 430081, China 2 The State Key Laboratory of Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract: Advanced high-strength steel has demonstrated tremendous potential in fields such as automotive, aerospace, and marine engineering due to its excellent mechanical properties. However, with the widespread use of advanced high-strength steel, its corrosion behavior in marine environments has become a factor restraining its development and application. Consequently, in recent years, researchers have conducted in-depth analyses of the mechanical properties and corrosion behavior of advanced high-strength steel. They have carried out systematic experimental and theoretical studies on microstructural evolution, mechanical property enhancement, and corrosion behavior control strategies. It has been found that the transformation-induced plasticity (TRIP) effect has a significant impact on both the mechanical properties and corrosion behavior. This paper summarizes the characteristics and development overview of typical third-generation advanced high-strength steel, reviews the research progress on the mechanical properties and corrosion behavior of advanced high-strength steel in marine environments. It concludes that the TRIP effect generally improves the mechanical properties of advanced high-strength steel but may simultaneously induce local stress concentration and stress corrosion cracking, thereby reducing the corrosion resistance of steel. It ends with a proposal of the corrosion protection measures, and a discussion on the future trends.
1 Soleimani M, Kalhor A, Mirzadeh H. Materials Science and Engineering A, 2020, 795, 140023. 2 Yi H L. JOM, 2014, 66(9), 1759. 3 Li Y J, Guo Y, Li L L, et al. Science, 2023, 379(6628), 168. 4 Wang M M, Ma F, Pei W C, et al. Heat Treatment of Metals, 2022, 47(9), 272 (in Chinese). 王明明, 马飞, 裴未迟, 等. 金属热处理, 2022, 47(9), 272. 5 Wang C Y, Chang Y, Zhou F L, et al. Acta Metallurgica Sinica, 2020, 56(4), 400 (in Chinese). 王存宇, 常颖, 周峰峦, 等. 金属学报, 2020, 56(4), 400. 6 Hu B, Luo H W, Yang F, et al. Journal of Materials Science and Technology, 2017, 33(12), 1457. 7 Speer J, Matlock D K, De Cooman B C, et al. Acta Materialia, 2003, 51(9), 2611. 8 Hu B, Luo H. Acta Materialia, 2019, 176, 250. 9 Ding R, Dai Z, Huang M, et al. Acta Materialia, 2018, 147, 59. 10 Xu Y B, Hu Z P, Zou Y, et al. Materials Science and Engineering A, 2017, 688, 40. 11 Matlock D K, Brautigam V E, Speer J G. Materials Science Forum, 2003, 426(4), 1089. 12 Du J L, Feng Y L, Zhang Y L, et al. Materials Reports, 2021, 35(15), 15189 (in Chinese). 杜金亮, 冯运莉, 张颖隆, 等. 材料导报, 2021, 35(15), 15189. 13 Gerdemann F L H, Speer J G. Materials Science and Technology, 2004, 20, 439. 14 Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Materials Science and Technology, 2002, 18, 279. 15 Feng Y P, Zhang X, Wu K M, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(5), 602 (in Chinese). 冯彦朋, 张弦, 吴开明, 等. 中国腐蚀与防护学报, 2021, 41(5), 602. 16 Yang B S. Hydrogen diffusion behavior in an ultra-fine bainite steel. Master's Thesis, Wuhan University of Science and Technology, China, 2021 (in Chinese). 杨帮树. 超细贝氏体钢中氢扩散行为研究. 硕士学位论文, 武汉科技大学, 2021. 17 Tian J Y, Xu G, Zhou M X, et al. Steel Research International, 2018, 89, 1700469. 18 Gao G H, Guo H R, Gui X L, et al. Materials Science and Engineering A, 2018, 736, 298. 19 Tran M T, Nguyen X M, Kim H, et al. International Journal of Plasticity, 2023, 171, 103812. 20 Liu C Q. Study on microstructure, mechanical property control and austenite stability of high strength and high plasticity medium manganese steel. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2020 (in Chinese). 刘春泉. 高强高塑性中锰钢组织性能调控及奥氏体稳定性研究. 博士学位论文, 武汉科技大学, 2020. 21 Han Y, Shi J, Xu L, et al. Materials Science & Engineering A, 2011, 530, 643. 22 Matlock D K, Speer J G, De Moor E, et al. Engineering Science and Technology, 2012, 15(1), 1. 23 Feng R, Zhang M H, Chen N L, et al. Acta Metallurgica Sinica, 2014, 50(4), 498 (in Chinese). 冯瑞, 张美汉, 陈乃录, 等. 金属学报, 2014, 50(4), 498. 24 Zhang K, Zhang M, Guo Z, et al. Materials Science & Engineering A, 2011, 528(29), 8486. 25 Webster D. ASM Transactions Quarterly, 1968, 61, 816. 26 Park J, Jo M C, Jeong H J, et al. Scientific Reports, 2017, 7(1), 15726. 27 He Z, Liu H, Zhu Z, et al. Materials (Basel), 2019, 12(22), 3781. 28 Skowronek A, Grajcar A, Kunio A, et al. Materials (Basel), 2020, 13(11), 2433. 29 He B. Materials (Basel), 2020, 13(15), 3440. 30 Zeng L, Song X, Chen N, et al. Materials Science and Engineering A, 2022, 857, 143742. 31 HajyAkbary F, Sietsma J, Petrov R H, et al. Scripta Materialia, 2017, 137, 27. 32 Shen Y F, Dong X X, Song X T, et al. Scientific Reports, 2019, 9(1), 7559. 33 Bi N, Tang H, Shi Z, et al. Materials (Basel), 2023, 16(6), 2220. 34 Wang N. Research on metal local corrosion damage evolution based on cellular automata method. Master's Thesis, Civil Aviation University of China, China, 2019 (in Chinese). 王宁. 基于元胞自动机法的金属局部腐蚀损伤演化研究. 硕士学位论文, 中国民航大学, 2019. 35 Sezer N, Evis Z, Kayhan S M, et al. Journal of Magnesium and Alloys, 2018, 6(1), 23. 36 Shi W L, Li H X, Kunio A, et al. Acta Biomaterialia, 2021, 131, 572. 37 Wu H, Jiang Y, You S S, et al. Journal of Mechanical Engineering, 2014, 50(22), 69 (in Chinese). 吴化, 姜颖, 尤申申, 等. 机械工程学报, 2014, 50(22), 69. 38 Wilson H, Farshid P, Rumana H, et al. Manufacturing and Materials Processing, 2019, 3(3), 55. 39 Chen H, Guo X Z, Chu W Y, et al. Materials Science and Engineering A, 2003, 358, 122. 40 Park I, Lee S, Lee Y, et al. Journal of Alloys and Compounds, 2015, 619, 205. 41 Bosch J, Martin U, Aperador W, et al. Materials (Basel), 2021, 14(2), 425. 42 Pan M, Zhang J, Zhang X, et al. Materials Science and Engineering A, 2022, 857, 144095. 43 Wei J, Dong J, Zhou Y, et al. Materials Characterization, 2018, 139, 401. 44 Chen H, Lv Z, Lu L, et al. Journal of Materials Research and Technology, 2021, 15, 3310. 45 Li Q, Yao Q, Sun L, et al. International Journal of Fatigue, 2023, 170, 107568. 46 Wei J, Liu H, He X Y, et al. In: Conference Record of the 11th National Conference on Corrosion and Protection. China, 2021, pp. 137. 47 Wu W, Hao W, Liu Z Y, et al. Construction and Building Materials, 2020, 239, 117903. 48 Handoko W, Pahlevani F, Hossain R, et al. Journal of Manufacturing and Materials Processing, 2019, 3(3), 55. 49 Xu X X, Cheng H L, Wu W, et al. Corrosion Science, 2021, 191, 109760. 50 Park S, Kim J G, Jung I D, et al. Acta Materialia, 2022, 239, 118291. 51 Ma H C. SCC Behaviors of E690 steel and welded joint in thin electrolyte layer containing sulfur dioxide. Ph. D. Thesis, University of Science and Technology Beijing, China, 2016 (in Chinese). 马宏驰. E690钢及焊接接头在含硫薄液环境中的应力腐蚀行为研究. 博士学位论文, 北京科技大学, 2016. 52 Lin Z H, Ming N X, He C, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(3), 307 (in Chinese). 林朝晖, 明南希, 何川, 等. 中国腐蚀与防护学报, 2021, 41(3), 307. 53 Kan B. Investigation of stress-induced hydrogen diffusion and hydrogen-induced cracking in marine steels. Ph. D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese). 阚博. 海工用钢的应力诱导氢扩散及氢致开裂研究. 博士学位论文, 北京科技大学, 2020. 54 Pidaparti R M, Rao A S. Corrosion Science, 2008, 50(7), 1932. 55 Ali N. B, Tanguy D, Estevez R, et al. Scripta Materialia, 2011, 65(3), 210. 56 Zhang F, Örnek C, Nilsson J O, et al. Corrosion Science, 2020, 164, 108319. 57 Dong X X, Shen Y F. Materials Science and Engineering A, 2022, 852, 143737. 58 Li Z X, Zhang L M, Udoh I I, et al. Tribology International, 2022, 167, 107422. 59 Zhu X. An Investigation into the hydrogen embrittlement mechanism in the 3rd generation advanced high strength automotive steels employing TRIP effect. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinese). 朱旭. 基于TRIP效应的第3代先进高强汽车用钢氢脆机制的研究. 博士学位论文, 上海交通大学, 2016. 60 Papula S, Sarikka T, Anttila S, et al. Materials (Basel), 2017, 10(6), 613. 61 Yang X, Yu H, Song C, et al. Materials (Basel), 2021, 14(24), 7752.