Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 25010122-9    https://doi.org/10.11896/cldb.25010122
  无机非金属及其复合材料 |
高熵氧化物在钠离子电池电极材料中的研究进展
蒋悦1, 肖明军1,2,*
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries
JIANG Yue1, XIAO Mingjun1,2,*
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 20206KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着能源危机和环境污染日益严重,迫切需要开发出全新的、更加环保且高效的新能源材料以缓解能源紧张的局势,并尽可能地降低传统化石能源体系对环境的影响。在众多探索的新能源材料中,钠离子电池(SIBs)因钠资源丰富和价格低廉而被广泛研究,展现出巨大的潜力。同时高熵氧化物(HEO)由于多金属氧化物效应,在能源储存与转换中得到广泛应用,其在SIBs中的应用最为广泛。然而HEO作为SIBs电极材料的综述较少,大部分研究只是聚焦于某一方面,缺乏对其全面、系统且深入的梳理与总结。基于此,本文系统地综述了HEO的基本定义、合成方法,重点分析了其在SIBs电极中的应用和性能变化。本综述可为HEO在SIBs中的发展提供方案,为促进其在SIBs中的产业化提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋悦
肖明军
关键词:  高熵氧化物  钠离子电池  储钠机制  合成方法  电极材料    
Abstract: With the increasingly serious energy crisis and environmental pollution, it is urgent to develop new, more environmentally friendly and efficient new energy materials to alleviate the energy shortage and reduce the impact on the environment as much as possible. Among the many exploration directions of new energy materials, sodium-ion batteries (SIBs) have received extensive research from scholars due to the abundance and low price of sodium resources, showing great potential. At the same time, high-entropy oxides (HEOs) are widely used in energy storage and conversion due to the multi-metal oxide effect, and are most widely used in SIBs. However, there are few detailed reviews of HEO as an electrode material for SIBs. Most of the studies may only focus on a local aspect, lacking a comprehensive, systematic and in-depth review and summary. Based on this, this paper systematically reviews the basic definition and synthesis methods of HEO, and focuses on its application and performance changes in SIBs electrodes. This review provides a solution for the development of HEO in SIBs and provides guidance for promoting its industrialization in SIBs.
Key words:  high-entropy oxides    sodium-ion batteries    sodium storage mechanism    method of combining    electrode material
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TB34  
  TM912  
基金资助: 甘肃省科技计划项目(24GRRA193);兰州市青年科技人才创新项目(2024-QN-107)
通讯作者:  *肖明军,博士,兰州理工大学材料科学与工程学院教师。目前主要从事原位TEM、离子电池、光电催化、第一性原理计算、二次资源高值化利用等方面的研究工作。xiaomj@lut.edu.cn   
作者简介:  蒋悦,兰州理工大学材料科学与工程学院硕士研究生。目前研究方向为高熵氧化物在钠离子电池和光电催化中的应用。
引用本文:    
蒋悦, 肖明军. 高熵氧化物在钠离子电池电极材料中的研究进展[J]. 材料导报, 2025, 39(24): 25010122-9.
JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries. Materials Reports, 2025, 39(24): 25010122-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010122  或          https://www.mater-rep.com/CN/Y2025/V39/I24/25010122
1 Wanison R, Syahputra W N H, Niti K L, et al. Journal of Energy Storage, 2024, 100, 113497.
2 Zhao Y, Kang Y, Wozny J, et al. Nature Reviews Materials, 2023, 8(9), 623.
3 Sawhney M, Wahid A, Muhkerjee S, et al. Chemphyschem, 2022, 23(5), e202100860.
4 Liu Y, Liu X, Wang T, et al. Sustainable Energy & Fuels, 2017, 1(5), 986.
5 Pei L, Kang J, He C, et al. Advanced Functional Materials, 2024, 15, 2422809.
6 Zhou S, Sun Y, Gao T, et al. Angewandte Chemie International Edition, 2023, 62(42), e202311930.
7 Lun Z, Ouyang B K, Won D H, et al. Nature Materials, 2020, 20(2), 214.
8 Chen T Y, Wang S Y, Kuo C H, et al. Journal of Materials Chemistry A, 2020, 41, 21756.
9 Bin X, Gang W, Tongde W, et al. Nano Energy, 2022, 95, 106962.
10 Fang S, Bresser D, Passerini S, et al. Advanced Energy Materials, 2020, 10, 1902485.
11 Liu X, Li X, Li Y, et al. EcoMat, 2022, 4(6), e12261.
12 Lin Y, Luo S, Zhao W, et al. Journal of Energy Chemistry, 2024, 98(12), 31.
13 Wang P Y, Chen D G, Zhu D G. Materials Reports, 2024, 38(22), 23040299(in Chinese).
王培远, 邓根成, 朱登贵. 材料导报, 2024, 38(22), 23040299.
14 Zhang Y. Diamond & Abrasives Engineering, 2022, 42(1), 30 (in Chinese).
张扬. 金刚石与磨料磨具工程, 2022, 42(1), 30.
15 Wang R, Kang Q L, Xu H Y. Journal of Inorganic Chemistry, 2023, 39(12), 2241 (in Chinese).
王睿, 康巧玲, 徐昊宇. 无机化学学报, 2023, 39(12), 2241.
16 Ran B, Li H, Cheng R, et al. Advanced Science, 2024, 11(25), e2401034.
17 Chang L, Shun L, Yunpeng Z, et al. Progress in Materials Science, 2024, 148, 48101385.
18 Yogesh Sharma Q Z, Alessandro R, Elizabeth S, et al. Physical Review Materials, 2020, 10, 1103.
19 Mao A, Xiang H Z, Zhang Z G, et al. Journal of Magnetism and Magnetic Materials, 2020, 497, 165884.
20 Wang Q, Sarkar A, Wang D, et al. Energy & Environmental Science, 2019, 12(8), 2433.
21 Chen H, Fu J, Zhang P F, et al. Journal of Materials Chemistry A, 2018, 10, 1039.
22 Braun J L, Rost C M, Lim M, et al. Advanced Materials, 2018, 30(51), 1805004.
23 Zhang X, Wang X, Lv X, et al. ChemSusChem, 2024, 18, e202401663.
24 Bonnet E, Grenier J C, Bassat J M, et al. Journal of the European Ceramic Society, 2021, 41(8), 4505.
25 Wang Y, Liu Y. Science China Materials, DOI:10. 1007/s40843-024-3117-8.
26 Yue J L, Xiong F, Shadik Z, et al. Journal of Power Sources, 2024, 627, 235735.
27 Wu C, Xu Y, Song J, et al. Chemical Engineering Journal, 2024, 500, 157264.
28 Li X, Zhang W, Lv K, et al. Journal of Power Sources, 2024, 620, 235259.
29 Garcia N G, Gonçalves J M, Real C, et al. Energy Storage Materials, 2024, 67, 103213.
30 Guo H, Avdeev M, Sun K, et al. Chemical Engineering Journal, 2021, 412, 128704.
31 Cai Q, Liu X, Hu H, et al. Asia-Pacific Journal of Chemical Engineering, 2024, 19(5), 001.
32 Kim H. ACS Materials Au, 2023, 3(6), 571.
33 Chen B, Zhang W-B, Yin Y, et al. Journal of Energy Storage, 2025, 109, 115228.
34 Li H J, Duan Y R, Zhao Z X, et al. Chemical Engineering Journal, 2023, 469, 143951.
35 Wen Y, Lin C, Shen H, et al. Chemical Engineering Journal, 2025, 506, 160126.
36 Bierbaum M, Leahy B D, Alemi A A, et al. Physical Review X, 2017, 74, 041007.
37 Lambe W A, Brady P M. Microscopy and Microanalysis, 2020, 4S2, 896.
38 Dwyer C. Physical Review Letters, 2023, 1305, 056101.
39 Salmeron M, Eren B. Chemical Reviews, 2020, 1212, 1.
40 Ando T. Current Opinion in Chemical Biology, 2019, 51, 105.
41 Stevie F A, Donley C L. Journal of Vacuum Science & Technology A, 2020, 386, 063204.
42 Shul’pina I L, Suvorov E V, Smirnova I A, et al. Technical Physics, 2024, 68, 778.
43 Tomboc G M, Zhang X, Choi S, et al. Advanced Functional Materials, 2022, 32(43), 2205142.
44 Ophus C. Microscopy And Microanalysis, 2019, 25(3), 563.
45 Xu M, Kumar A, LeBeau J M. Microscopy and Microanalysis, 2022, 28(6), 1952.
46 Chellali M R, Sarkar A, Nandam S H, et al. Scripta Materialia, 2019, 166, 58.
47 Fracchia M, Manzoli M, Anselmi-Tamburini U, et al. Scripta Materialia, 2020, 188, 26.
48 Mazza A R, Gao X, Rossi D J, et al. Journal of Vacuum Science & Technology A, 2022, 40, 013404.
49 Wang H J, Gao J Q, Mei Y, et al. Angewandte Chemie International Edition, 2024, 64, e202418605.
50 Liu C Z, Liu M Z, Cheng Z X, et al. Ceramics International, 2024, 50(13), 24397.
51 González-Rivas M U, Aamlid S S, Rutherford M R, et al. arXiv-PHYS-Materials Science, 2024, 146(38), 25889.
52 Xiang H. The Chinese Journal of Process Engineering, 2020, 20(3), 245(in Chinese).
项厚政. 过程工程学报, 2020, 20(3), 245.
53 Wang D, Liu Z, Du S, et al. Journal of Materials Chemistry A, 2019, 7(42), 24211.
54 Wang D, Duan C, He H, et al. Journal of Colloid and Interface Science, 2023, 646, 89.
55 Esposito S. Materials, 2019, 12(4), 668.
56 Santos J R D, Raimundo R A, Oliveira J F G d A, et al. Journal of Electroanalytical Chemistry, 2024, 961, 118191.
57 Asim M, Hussain A, Khan S, et al. Molecules, 2022, 27(18), 5951.
58 He M, Liu S, Wu J, et al. Progress in Solid State Chemistry, 2024, 74, 100452.
59 Gao H, Li J, Zhang F, et al. Advanced Energy Materials, 2024, 14(20), e2304529.
60 Tong Z, Yuesen L, Zihao S, et al. Journal of Energy Chemistry, 2024, 103, 294.
61 Jayamkondan Y, Penki T R, Nayak P K. Materials Today Energy, 2023, 36, 101360.
62 Ding F, Wang H, Zhang Q, et al. Journal of the American Chemical Society, 2023, 145(25), 13592.
63 Huang Z, Wang S, Guo X, et al. Advanced Materials, 2024, 36(50), 2410857.
64 Pang Y, Wang Y, Jiang C, et al. ChemSusChem, 2024, 17, e202400768.
65 Yao L, Zou P, Wang C, et al. Advanced Energy Materials, 2022, 12(41), 2201989.
66 Peng B, Chen Y, Zhao L, et al. Energy Storage Materials, 2023, 56, 631.
67 Chen H, Qiu N, Wu B, et al. RSC Advances, 2020, 10(16), 9736.
68 Chen T Y, Wang S Y, Kuo C H, et al. Journal of Materials Chemistry A, 2020, 41, 21343.
69 Xiang H Z, Xie H X, Chen Y X, et al. Journal of Materials Science, 2021, 56(13), 8127.
70 Nguyen T X, Patra J, Chang J-K, et al. Journal of Materials Chemistry A, 2020, 8(36), 18963.
71 Luo X F, Patra J, Chuang W T, et al. Advanced Science, 2022, 9(21), e2201219.
72 Qiu N, Chen H, Yang Z, et al. Journal of Alloys and Compounds, 2019, 777, 767.
73 Wang S Y, Chen T Y, Kuo C H, et al. Materials Chemistry and Physics, 2021, 274, 125105.
74 Su J, Cao Z, Jiang Z, et al. International Journal of Applied Ceramic Technology, 2022, 19(4), 2004.
75 Yen J Z, Yang Y C, Tuan H Y. Chemical Engineering Journal, 2022, 450, 137924.
76 Song Z, Liu R, Liu W D, et al. Advanced Energy and Sustainability Research, 2023, 4(11), 2300102.
77 Ni Q, Bai Y, Wu F, et al. Advanced Science, 2017, 4(3), 1600275.
78 Jin T, Li H, Zhu K, et al. Chemical Society Reviews, 2020, 49(8), 2342.
79 Liu J, Wang Q, Chen L, et al. Electrochimica Acta, 2022, 426, 140579.
80 Rajagopalan R, Chen B, Zhang Z, et al. Advanced Materials, 2017, 29(12), 1605694.
81 Li H X, Xu M, Long H W, et al. Advanced Science, 2022, 9(25), e2202082.
82 Chen Y, Liao X, Xie M, et al. ACS Sustainable Chemistry & Engineering, 2024, 12(36), 13401.
83 Peng Z Q, Ma E. Environmental Chemistry, 2024, 44(8), 1 (in Chinese).
彭志强, 马恩. 环境化学, 2024, 44(8), 1.
84 Zhang Y M, Wang Y F. Energy Engineering, 2024, 44(4), 1 (in Chinese).
张艳梅, 王一菲. 能源工程, 2024, 44(4), 1.
85 Chen J, Wei L, Mahmood A, et al. Energy Storage Materials, 2020, 25, 585.
86 Wang W, Gang Y, Hu Z, et al. Nature Communications, 2020, 11(1), 980.
87 Wang Y, Liu J, Jiang N, et al. Small, 2024, 20(44), e2403211.
88 Liu X Y, Gong H G, Han C Y, et al. Energy Storage Materials, 2023, 57, 118.
89 Wu J, Wang G, Li K, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 702, 135099.
90 Jiang W, Wang T, Chen H, et al. Nano Energy, 2021, 79, 105464.
91 Lei Y, Wang S, Zhao L, et al. Advanced Science, 2024, 11(28), 2402340.
92 Slater M D, Kim D, Lee E, et al. Advanced Functional Materials, 2012, 23(8), 947.
93 He Z, Huang Y, Liu H, et al. Nano Energy, 2024, 129, 109996.
94 Perveen T, Siddiq M, Shahzad N, et al. Renewable and Sustainable Energy Reviews, 2020, 119, 109549.
95 Xu M, Chen X, Saju S K, et al. Journal of Materials Science, 2024, 60(3), 1116.
96 Dahn D A S J R. Journal of the Electrochemical Society, 2000, 147, 1271.
97 Dong L, Tian Y, Luo C, et al. Materials, 2024, 17(7), 1542.
98 Yang X b, Wang H Q, Song Y Y, et al. ACS Applied Materials & Interfaces, 2022, 14, 26873.
99 Yu Z, Xin W, Lan X X, et al. Processes, 2021, 10(1), 49.
100 Zou X, Zhang Y R, Huang Z P, et al. Chemical Communications, 2023, 59(91), 13535.
101 Xiao B, Liu X, Xie Z, et al. Chemical Engineering Journal, 2025, 503, 158269.
102 Ze H, Xiao H L, Q T. Journal of Taiyuan University of Technology 2024, 55(3), 445.
103 Fang S, Bresser D, Passerini S. Advanced Energy Materials, 2019, 10, 1902485.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
[3] 郭洪飞, 张爱迪, 赵敏. 高熵氧化物陶瓷制备与应用的研究进展[J]. 材料导报, 2025, 39(24): 24100178-9.
[4] 王蕾, 刘少冕, 范凤兰, 韩伟. 大幅提高速生木基钠离子电池负极首次库伦效率方法的研究[J]. 材料导报, 2025, 39(23): 24110189-6.
[5] 马应霞, 李静, 孟田力, 常士范, 李文静. Ni-MOF/GNS@Ni/Mn-LDH电极材料的电化学性能研究[J]. 材料导报, 2025, 39(22): 24110051-8.
[6] 杨瀚, 刘国柱, 魏轶聃, 赵伟, 魏应强, 周颖, 隋志远, 刘美杰, 尤兴宇, 魏敬和. 面向存储和神经形态计算应用的CBRAM发展综述[J]. 材料导报, 2025, 39(21): 24100167-12.
[7] 惠功领, 张晋豪, 解炜, 辛智, 毛昳萱, 陈成猛. 预氧化在高性能钠离子电池用硬炭制备改性中发挥的作用[J]. 材料导报, 2025, 39(20): 24090241-13.
[8] 丁一丁, 陈洋羊, 卿彦. 木竹衍生硬碳材料在钠离子电池中的应用[J]. 材料导报, 2025, 39(20): 24090167-10.
[9] 王相雅, 周琦, 冉奋. 面向植入式生物电子的PEDOT基电极材料[J]. 材料导报, 2025, 39(20): 24050069-13.
[10] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[11] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[12] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[13] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[14] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[15] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed