Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 25010113-9    https://doi.org/10.11896/cldb.25010113
  无机非金属及其复合材料 |
地质聚合物固化土动力特性及动本构模型拟合分析
胡建林1,2,3,*, 赵雨萱2, 周永祥1, 冷发光4, 杜修力1
1 北京工业大学城市与工程安全减灾教育部重点实验室,北京100124
2 河北建筑工程学院土木工程学院,河北 张家口 075000
3 河北省寒冷地区交通基础设施工程技术创新中心,河北 张家口 075000
4 中国建筑科学研究院有限公司,北京 100013
Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model
HU Jianlin1,2,3,*, ZHAO Yuxuan1, ZHOU Yongxiang1, LENG Faguang4, DU Xiuli1
1 Key Laboratory of Urban and Engineering Safety and Disaster Mitigation of the Ministry of Education, Beijing University of Technology, Beijing 100124, China
2 School of Civil Engineering, Hebei University of Architecture, Zhangjiakou 075000, Hebei, China
3 Hebei Provincial Traffic Infrastructure Engineering Technology Innovation Center in Cold Regions, Zhangjiakou 075000, Hebei, China
4 China Academy of Building Research, Beijing 100013, China
下载:  全 文 ( PDF ) ( 6774KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地质聚合物固化土是一种在工程领域较新颖的废物再利用方式。针对地震和车辆行驶等动荷载易对路基土造成破坏的问题,以高炉矿渣、粉煤灰为地质聚合物基材对张家口地区土体进行固化。采用分级加载动三轴试验方法,研究固化剂掺入比、初始偏应力、围压、龄期对地质聚合物固化土动变形特性的影响,对地质聚合物固化土动骨干曲线、动弹性模量进行分析,并对地质聚合物固化土动本构关系进行拟合。结果表明:分级循环荷载作用下固化土动骨干曲线与动弹性模量呈非线性关系,随固化剂掺入比、初始偏应力、围压、龄期增长,动骨干曲线逐渐变陡、动弹性模量曲线升高,结构稳定性、抵抗动变形能力得到增强。在Hardin-Drnevich模型基础上,加入修正系数k,提出可以反映初始偏应力、固化剂掺入比、围压以及龄期的修正Hardin-Drnevich模型。上述研究结果可为地质聚合物固化土在实际工程中的应用提供相关理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡建林
赵雨萱
周永祥
冷发光
杜修力
关键词:  地质聚合物  固化土  动力特性  动骨干曲线  动弹性模量  本构模型    
Abstract: Geopolymer solidified soil is an innovative waste reuse method in the engineering field. Addressing the issue that dynamic loads such as earthquakes and vehicle traffic can easily cause damage to subgrade soils, this work explored the use of blast furnace slag and fly ash as geopolymer binders to solidify soils from the Zhangjiakou region. A staged loading dynamic triaxial test method was employed to investigate the effects of binder content, initial deviatoric stress, confining pressure, and curing age on the dynamic deformation characteristics of geopolymer solidified soils. The dynamic backbone curve and dynamic elastic modulus of the solidified soil were analyzed, and a dynamic constitutive model for geopolymer solidified soil was fitted. The results indicate that under staged cyclic loading, the dynamic backbone curve and dynamic elastic modulus exhibit nonlinear behavior. As the binder content, initial deviatoric stress, confining pressure, and curing age increase, the dynamic backbone curve becomes steeper, and the dynamic elastic modulus increases, thereby enhancing the structural stability and resistance to dynamic deformation. Based on the Hardin-Drnevich model, a modified coefficient k is introduced, leading to a modified Hardin-Drnevich model that can reflect the effects of initial deviatoric stress, binder content, confining pressure, and curing age. These findings provide a theoretical basis for the practical application of geopolymer solidified soil in engineering projects.
Key words:  geopolymer    solidified soil    dynamic characteristics    dynamic backbone curve    dynamic modulus of elasticity    donstitutive model
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TU443  
基金资助: 国家自然科学基金面上项目(52378213);河北省高等学校科学技术研究项目(QN2024070)
通讯作者:  *胡建林,河北建筑工程学院土木工程学院副教授、硕士研究生导师。2013年河海大学岩土工程专业硕士毕业,现为北京工业大学在读博士。目前主要研究领域为土体加固、基坑支护、边坡稳定、地基处理。hjl185@126.com   
引用本文:    
胡建林, 赵雨萱, 周永祥, 冷发光, 杜修力. 地质聚合物固化土动力特性及动本构模型拟合分析[J]. 材料导报, 2025, 39(24): 25010113-9.
HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model. Materials Reports, 2025, 39(24): 25010113-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010113  或          https://www.mater-rep.com/CN/Y2025/V39/I24/25010113
1 Singh N B, Middendorf B. Construction and Building Materials, 2020, 237, 117455.
2 Zhang J, Li B, Zhang M, et al. Case Studies in Construction Materials, 2024, 20, e3279.
3 Li S H, Fang X W, Li Y H, et al. Journal of Materials in Civil Engineering, 2024, 36(12), 18342.
4 Yu J R, Chen Y H, Chen G, et al. Journal of Building Materials,2020, 23(2), 364(in Chinese).
俞家人, 陈永辉, 陈庚, 等. 建筑材料学报, 2020, 23(2), 364.
5 Yang P, Liu C Y, Lu Q R, et al. Science Technology and Engineering, 2024, 24(13), 5491(in Chinese).
杨盼, 刘创奕, 庆蕊, 等. 科学技术与工程, 2024, 24(13), 5491.
6 Pathmanathan R, Mithaq K, Gnananadan S J. Journal of Materials in Civil Engineering, 2023, 35(7), 9941.
7 Liu J J, Luo H P, Lei H Y, et al. Journal of Railway Science and Engineering,2024, 21(7), 2745(in Chinese).
刘景锦, 罗昊鹏, 雷华阳, 等. 铁道科学与工程学报, 2024, 21(7), 2745.
8 Wu J, Zheng X Y, Yang A W, et al. Rock and Soil Mechanics, 2021, 42(3), 647(in Chinese).
吴俊, 征西遥, 杨爱武, 等. 岩土力学, 2021, 42(3), 647.
9 Zhang J J, Li B, Yu C, et al. Rock and Soil Mechanics, 2022, 43(9), 2421(in Chinese).
张津津, 李博, 余闯, 等. 岩土力学, 2022, 43(9), 2421.
10 Yang C W, Luo J, Yue M, et al. Soil Dynamics and Earthquake Engineering, 2025, 190, 109177.
11 Thanh T N, Buddhima I, Mandeep S. Transportation Geotechnics, DOI:10. 1016/J. TRGEO. 2021. 100581.
12 Li W T, Yang K, Cheng Y, et al. Sustainability, 2024, 16(10), 4313.
13 Zhang Z, Chen Y, Yang T L, et al. Hydrogeology & Engineering Geology, 2021, 48(2), 89(in Chinese).
张振, 陈勇, 杨天亮, 等. 水文地质工程地质, 2021, 48(2), 89.
14 Huang J, Ding Z D, Yuan T Y, et al. Rock and Soil Mechanics, 2017, 38(9), 2551(in Chinese).
黄娟, 丁祖德, 袁铁映, 等. 岩土力学, 2017, 38(9), 2551.
15 Wang Q, Liu Z Z, Wang L M, et al. Chinese Journal of Geotechnical Engineering, 2023, 45(S2), 235(in Chinese).
王谦, 刘钊钊, 王兰民, 等. 岩土工程学报, 2023, 45(S2), 235.
16 Li L H, Zhang D F, Xiao H L, et al. Rock and Soil Mechanics, 2023, 44(12), 3360(in Chinese).
李丽华, 张东方, 肖衡林, 等. 岩土力学, 2023, 44(12), 3360.
17 Chai S B, Li X P, Li Y N, et al. Advanced Engineering Sciences, 2024, 56(3), 134(in Chinese).
柴少波, 李显鹏, 李轶楠, 等. 工程科学与技术, 2024, 56(3), 134.
18 Yin P B, Zou M, He W, et al. China Highway, 2024, 37(4), 155(in Chinese).
尹平保, 邹敏, 贺炜, 等. 中国公路学报, 2024, 37(4), 155.
19 Zhang X B. Research on the mechanical properties and design methods of solidified loess subgrade for highways under cyclic traffic loads. Ph. D. Thesis, Southeast University, China, 2022(in Chinese).
张孝彬. 交通循环荷载作用下公路固化粉土路基力学性质及设计方法研究. 博士学位论文, 东南大学, 2022.
20 Zhuang Y, Zhu W, Zhang F. Journal of Central South University (Science and Technology), 2019, 50(2), 445 (in Chinese).
庄妍, 朱伟, 张飞. 中南大学学报(自然科学版), 2019, 50(2), 445.
[1] 王竟宇, 詹良通, 梁腾, 陈萍. 铸余渣固化工程渣土再生路基填料的性能与机制[J]. 材料导报, 2025, 39(5): 24020088-7.
[2] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[3] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[4] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[5] 孙海宽, 甘德清, 刘志义, 薛振林. 水-压-应力波作用下磁铁石英岩动态损伤演化与损伤模型[J]. 材料导报, 2025, 39(24): 24050143-8.
[6] 张智慧, 吴升清, 杨瑞泽, 汪建强, 郭逸丰, 刘生, 徐斌, 郭丽丽, 孙明月. 锻态GH4098高温合金热变形行为与再结晶组织演化规律[J]. 材料导报, 2025, 39(24): 24100028-8.
[7] 万思宇, 苏三庆, 曹振, 王照耀. 混杂纤维高强高延性水泥基复合材料弯曲性能及预测模型[J]. 材料导报, 2025, 39(23): 24120022-10.
[8] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[9] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[10] 马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
[11] 沙东, 李根, 王芳, 唐民, 刘乙丁. 基于BBR试验的高模量沥青低温本构模型的建立与评价[J]. 材料导报, 2025, 39(22): 24080054-7.
[12] 殷溥隆, 李艳, 田勇, 翟越, 李乐, 何峻宇, 贾宇, 程禹翰. 冻融循环作用下黄土基水泥土三轴压缩力学特性及本构模型研究[J]. 材料导报, 2025, 39(21): 24100069-8.
[13] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[14] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[15] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed