Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24100028-8    https://doi.org/10.11896/cldb.24100028
  金属与金属基复合材料 |
锻态GH4098高温合金热变形行为与再结晶组织演化规律
张智慧1,3, 吴升清2, 杨瑞泽3, 汪建强4, 郭逸丰4, 刘生4,*, 徐斌2, 郭丽丽1,*, 孙明月2
1 大连交通大学材料科学与工程学院,辽宁 大连 116028
2 中国科学院金属研究所沈阳材料科学国家研究中心,沈阳 110016
3 长三角先进材料研究院,江苏 苏州 215000
4 苏州实验室,江苏 苏州 215123
Hot Deformation Behavior and Recrystallization Microstructure Evolution of Forged GH4098 Superalloy
ZHANG Zhihui1,3, WU Shengqing2, YANG Ruize3, WANG Jianqiang4, GUO Yifeng4, LIU Sheng4,*, XU Bin2,GUO Lili1,*, SUN Mingyue2
1 College of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Yangtze Delta Region Institute of Advanced Materials, Suzhou 215000, Jiangsu, China
4 Suzhou Laboratory, Suzhou 215123, Jiangsu, China
下载:  全 文 ( PDF ) ( 48141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在应变速率0.01~10 s-1和变形温度1 050~1 200 ℃的条件下,采用Gleeble-3800热-力模拟试验机对锻态GH4098高温合金进行等温热压缩试验,建立了该合金的本构方程与热加工图。分析了合金在10 s-1的高应变速率、不同温度(1 050 ℃、1 100 ℃、1 150 ℃、1 200 ℃)下热变形的组织演化规律。采用Arrhenius本构模型,引入Zener-Hollomon参数,计算了GH4098高温合金的本构方程与热加工图,发现在0.01~0.022 s-1、1 050~1 150 ℃下材料的能量耗散率最高达到37%。通过EBSD微观组织分析发现GH4098高温合金的动态再结晶(DRX)机制主要为不连续动态再结晶(DDRX),DRX体积分数与平均晶粒尺寸均随温度在1 050~1 150 ℃内的升高而增大,二者最高值分别为80.7%和8.24 μm;1 200 ℃时,新晶粒随应变增加向变形态转变,并促进了二次再结晶的发生,导致再结晶体积分数与平均晶粒尺寸减小。研究表明,1 150~1 200 ℃为最佳热加工区域,这一结果可为GH4098高温合金的应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张智慧
吴升清
杨瑞泽
汪建强
郭逸丰
刘生
徐斌
郭丽丽
孙明月
关键词:  GH4098高温合金  Arrhenius本构模型  动态再结晶(DRX)  热加工图    
Abstract: The isothermal hot compression tests of the forged GH4098 superalloy were conducted using the Gleeble-3800 thermal-mechanical simulator at strain rates ranging from 0.01 to 10 s-1 and deformation temperatures between 1 050 ℃ and 1 200 ℃). The constitutive equation and hot processing map of the alloy were established. The microstructural evolution laws during hot deformation under different temperatures (1 050 ℃, 1 100 ℃, 1150 ℃, 1 200 ℃ were analyzed at a high strain rate of 10 s-1. The constitutive equation and hot processing map of the GH4098 superalloy were derived using the Arrhenius constitutive model and the Zener-Hollomon parameter. The energy dissipation rate of the material reached 37% at strain rates of 0.01 to 0.022 s-1 and deformation temperatures of 1 050 ℃ to 1 150 ℃. The dynamic recrystallization (DRX) mechanism of the GH4098 superalloy was identified as discontinuous dynamic recrystallization (DDRX) through EBSD microstructural analysis. At temperatures ranging from 1 050 ℃ to 1 150 ℃, both the DRX volume fraction and average grain size increased with rising temperature, with peak values of 80.7% and 8.24 μm, respectively. At 1 200 ℃, the new grains underwent shape changes with increasing strain, promoting the occurrence of secondary recrystallization. This process resulted in a decrease in both the volume fraction of recrystallization and the average grain size. The output of this work indicates that the optimal hot working temperature range is 1 150—1 200 ℃, which could provide a theoretical foundation for the application of the GH4098 superalloy.
Key words:  GH4098 superalloy    Arrhenius constitutive model    dynamic recrystallization (DRX)    hot processing map
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TG135+.1  
基金资助: 国家重点研发计划(2022YFB3405301);江苏省科技计划专项资金(BZ2024059)
通讯作者:  *刘生,博士,助理研究员。主要研究方向包括大型锻件构筑成形及异种材料复合成形机理及应用技术。lius@szlab.ac.cn;郭丽丽,博士,大连交通大学材料科学与工程学院教育部连续挤压工程研究中心教授。主要从事轻合金成形技术方面的研究,重点研究方向是镁合金塑性成形中的微观组织和织构演变,以及镁合金板材、型材挤压、轧制成形工艺的有限元模拟和实验。guolili0822@hotmail.com   
作者简介:  张智慧,大连交通大学材料科学与工程学院硕士研究生,在郭丽丽教授的指导下开展异种金属材料复合挤压成型的研究。
引用本文:    
张智慧, 吴升清, 杨瑞泽, 汪建强, 郭逸丰, 刘生, 徐斌, 郭丽丽, 孙明月. 锻态GH4098高温合金热变形行为与再结晶组织演化规律[J]. 材料导报, 2025, 39(24): 24100028-8.
ZHANG Zhihui, WU Shengqing, YANG Ruize, WANG Jianqiang, GUO Yifeng, LIU Sheng, XU Bin,GUO Lili, SUN Mingyue. Hot Deformation Behavior and Recrystallization Microstructure Evolution of Forged GH4098 Superalloy. Materials Reports, 2025, 39(24): 24100028-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100028  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24100028
1 Bo Y, Liu J K, He Y H. Special Steel Technology, 2007, 50(13), 31 (in Chinese).
柏宇, 牛建科, 何云华. 特钢技术, 2007, 50(13), 31.
2 Wei Y J. Special Steel Technology, 2008, 55(14), 42 (in Chinese).
魏育君. 特钢技术, 2008, 55(14), 42.
3 Meng Z B, Wang Y Q, Yin F J, et al. Journal of Iron and Steel Research, 2003, 15(6), 54 (in Chinese).
蒙肇斌, 王延庆, 尹法杰, 等. 钢铁研究学报, 2003, 15(6), 54.
4 Yu Y H, Sun K P, Deng X Q, et al. Special Steel, 2008, 29(5), 35 (in Chinese).
喻育红, 孙魁平, 邓秀琴, 等. 特殊钢, 2008, 29(5), 35.
5 Shui L, Fu J H. Iron Steel Vanadium Titanium, 2023, 44(4), 173 (in Chinese).
税烺, 付建辉. 钢铁钒钛, 2023, 44(4), 173.
6 Li S, Zeng L, Miao H J, et al. Transactions of Materials and Heat Treatment, 2013, 34(9), 51 (in Chinese).
李莎, 曾莉, 苗华军, 等. 材料热处理学报, 2013, 34(9), 51.
7 Chen X M, Lin Y C, Chen M S, et al. Materials & Design, 2015, 77, 41.
8 Detrois M, Antonov S, Tin S, et al. Materials Characterization, 2019, 157, 109915.
9 He D G, Lin Y C, Chen M S, et al. Journal of Alloys and Compounds, 2015, 649, 1075.
10 Wang Y, Shao W Z, Zhen L, et al. Materials Science and Engineering A, 2011, 528(7-8), 3218.
11 Zhang H Y, Chen M, Hu R F, et al. Chinese Journal of Rare Metals, 2024, 48(5), 651 (in Chinese).
张海燕, 程明, 胡如夫, 等. 稀有金属, 2024, 48(5), 651.
12 Hajkazemi J, Zarei-Hanzaki A, Sabet M, et al. Materials Science and Engineering A, 2011, 530, 233.
13 Cao Y, Di H, Zhang J, et al. Journal of Nuclear Materials, 2015, 456, 133.
14 Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Materials & Design, 2016, 94, 28.
15 Wang L, Liu F, Tian Y, et al. Materials Reports, 2023, 37(S1), 456 (in Chinese).
王磊, 刘峰, 田野, 等. 材料导报, 2023, 37(S1), 456.
16 Tan Y B, Ma Y H, Zhao F. Journal of Alloys and Compounds, 2018, 741, 85.
17 Sellars C M, Tegart W J M. Mémoires Scientifiques de la Revue de Métallurgie, 1966, 63(9), 731.
18 Zhang F P, Gao Y, He X F, et al. Journal of Plasticity Engineering, 2023, 30(11), 98 (in Chinese).
张芳萍, 高毅, 和蕊芳, 等. 塑性工程学报, 2023, 30(11), 98.
19 Liu Z L, Ren S, Liu W, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(8), 2577 (in Chinese).
刘志凌, 任帅, 刘伟, 等. 中国有色金属学报, 2023, 33(8), 2577.
20 Wang W. Materials for Mechanical Engineering, 2020, 44(9), 87 (in Chinese).
王稳. 机械工程材料, 2020, 44(9), 87.
21 Ning Y, Yao Z, Guo H, et al. Journal of Alloys and Compounds, 2014, 584, 494.
22 Li N, Wang C Q, Sun Z L, et al. Hot Working Technology, 2025(10), 114 (in Chinese).
李宁, 王传奇, 孙振淋, 等. 热加工工艺, 2025(10), 114.
23 Li P, Xu H F, Meng M, et al. Journal of Plasticity Engineering, 2024, 31(2), 120 (in Chinese).
李萍, 许海峰, 孟淼, 等. 塑性工程学报, 2024, 31(2), 120.
24 Zhang J L, Zhang Y M, Luo W C, et al. Iron Steel Vanadium Titanium, 2023, 44(6), 149 (in Chinese).
张继林, 张又铭, 罗文翠, 等. 钢铁钒钛, 2023, 44(6), 149.
25 Liao C, Wu H, Wu C, et al. Progress in Natural Science:Materials International, 2014, 24(3), 253.
26 Prasad Y, Gegel H L, Doraivelu S M, et al. Metallurgical Transactions A, 1984, 15, 1883.
27 Li H Z, Yang L, Wang Y, et al. Journal of Materials Engineering, 2020, 48(9), 115 (in Chinese).
李慧中, 杨雷, 王岩, 等. 材料工程, 2020, 48 (9). 115.
28 Zhu Q, Zhang Z A, Zhang L F, et al. Forging Stamping Technology, 2024, 49(7), 57 (in Chinese).
朱强, 张自昂, 张林福, 等. 锻压技术, 2024, 49(7), 57.
29 Li Y, Dong Y, Jiang Z, et al. Metals and Materials International, 2024, 30(5), 1356.
30 Pang H, Li Q. Journal of Alloys and Compounds, 2022, 920, 165937.
31 Lizzi F, Pradeep K, Stanojevic A, et al. Metals, 2021, 11(4), 605.
32 Wang B, Shan X, Zhao H, et al. Journal of Alloys and Compounds, 2023, 936, 168059.
33 Sheng S L. Hot deformation behavior of 316LN-Mn austenitic stainless steel. Master’s Thesis, Jiangsu University of Science and Technology, China, 2022 (in Chinese).
盛绍龙. 316LN-Mn奥氏体不锈钢的热变形行为研究. 硕士学位论文, 江苏科技大学, 2022.
34 Mandal S, Jayalakshmi M, Bhaduri A K, et al. Metallurgical and Materials Transactions A, 2014, 45, 5645.
35 Liao B, Wu X, Cao L, et al. Journal of Alloys and Compounds, 2019, 796, 103.
36 Kubota M, Ushioda K, Miyamoto G, et al. Scripta Materialia, 2016, 112, 92.
37 Samantaray D, Mandal S, Jayalakshmi M, et al. Materials Science and Engineering A, 2014, 598, 368.
[1] 刘瑞, 杨川, 史程程, 崔旭昌, 刘欢, 王如月. 铅基巴氏合金热变形行为与微观组织演变[J]. 材料导报, 2025, 39(22): 24090020-8.
[2] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[3] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[4] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[5] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[6] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[7] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[8] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[9] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[10] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[11] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[12] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[13] 刘松浩, 司家勇, 陈龙, 徐梦杰. FGH4096合金含高应变速率的流变行为和热加工图构建[J]. 材料导报, 2020, 34(20): 20123-20129.
[14] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[15] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[1] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[2] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[3] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[4] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[8] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed