Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 25010185-6    https://doi.org/10.11896/cldb.25010185
  无机非金属及其复合材料 |
土工格室加固道床的影响因素研究
王子照*
中铁建设集团有限公司,北京 100043
Study on the Influence Factors of Strengthening Track Bed with Geocell
WANG Zizhao*
China Railway Construction Group Co., Ltd., Beijing 100043, China
下载:  全 文 ( PDF ) ( 5034KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着列车运行向高速与重载方向发展,铁路路基沉降的控制标准日益提高。本工作通过建立有砟轨道-路基三维模型及土工格室模型,研究了道砟层和土工格室的加固作用,并通过相位荷载模拟列车动荷载,分析了列车轴重以及土工格室对道砟沉降的影响。结果显示,在正弦相位荷载作用下,各轨枕间位移变化几乎一致,证明该方法可以有效模拟列车荷载;随着列车轴重增加,道砟沉降显著增大;而土工格室加固后,道砟层竖向沉降和侧向位移分别降低约11%和60%,表明土工格室在水平约束方面表现出较好的效果。尽管在重载情况下其加固能力有所减弱,但通过调整弹性模量可以提升性能。当弹性模量处于400~800 MPa之间时,加固效果最优。研究结论为路基沉降控制提供了指导,同时为选择合适的土工格室应用于有砟轨道提供了数据支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王子照
关键词:  道床沉降  数值模拟  动荷载  土工格室  轴重  铺设方案    
Abstract: Track settlement is a primary disease for ballasted railway, especially for fast and heavy haul trains. In order to study the reinforcing mechanism of geocell, the 3D finite element model of ballasted track with a geocell layer embedded in ballast layer were established by ABAQUS software, and 90° phase loading were used to simulate the cyclic load of passing train. The simulation results show that all the sleeper settlements are similar which prove the sinusoidal phase loading is acceptable to model the train load. With the increasing of the axle load, the ballast settlement increases. Meanwhile, for the reinforced condition, the lateral displacement and vertical settlement of ballast layer reduce 60% and 11%, respectively, which confirms the confinement function of the geocell. The reinforcing efficiency under the heavy load becomes smaller than that under the normal load, but it is also can be improved by modifing the geocell stiffness. The geocell stiffness of 400—800 MPa is required to achieve a good confinement under heavy load. This findinga is useful to control the track settlement, and also the application of geocell in ballasted railway.
Key words:  track settlement    numerical simulation    dynamic load    geocell    axle load    layout scheme
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  U213.1  
基金资助: 国家重点研发计划(2023YFC3009300)
通讯作者:  *王子照,中铁建设集团有限公司项目经理,高级工程师。2010年6月毕业于山东建筑大学,获交通工程专业学士学位。从事岩土工程理论和关键技术研究。baistuwong@126.com   
引用本文:    
王子照. 土工格室加固道床的影响因素研究[J]. 材料导报, 2025, 39(24): 25010185-6.
WANG Zizhao. Study on the Influence Factors of Strengthening Track Bed with Geocell. Materials Reports, 2025, 39(24): 25010185-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010185  或          https://www.mater-rep.com/CN/Y2025/V39/I24/25010185
1 Xie Y, Kou J Y, Jiang M, et al. High Speed Railway Technology, 2020, 11(1), 11(in Chinese).
谢毅, 寇峻瑜, 姜梅, 等. 高速铁路技术, 2020, 11(1), 11
2 Liu G, Luo Q, Zhang L, et al. Journal of Railway Science and Engineering, 2015, 12 (3), 475(in Chinese).
刘钢, 罗强, 张良, 等. 铁道科学与工程学报, 2015, 12(3), 475.
3 Gong C. Three dimensional finite element analysis of dynamic response and influence parameters of high speed railway track subgrade system. Master’s Thesis, Jilin University, China, 2009 (in Chinese).
巩琛. 高速铁路轨道-路基系统动力响应及影响参数的三维有限元分析. 硕士学位论文, 吉林大学, 2009.
4 Dong L, Cai D G, Ye Y S, et al. Journal of Civil Engineering, 2010, 43(6), 100(in Chinese).
董亮, 蔡德钩, 叶阳升, 等. 土木工程学报, 2010, 43(6), 100.
5 Dong L, Zhang Q L, Cai D G, et al. China Railway Science, 2010, 31 (2), 6(in Chinese).
董亮, 张千里, 蔡德钩, 等. 中国铁道科学, 2010, 31(2), 6.
6 Dong L, Zhao C G, Cai D G, et al. Journal of Civil Engineering, 2008, 41 (10), 81(in Chinese).
董亮, 赵成刚, 蔡德钩, 等. 土木工程学报, 2008, 41(10), 81.
7 Jiang H G, Bian X C, Chen Y M, et al. Journal of Civil Engineering, 2015, 48 (9), 85(in Chinese).
蒋红光, 边学成, 陈云敏, 等. 土木工程学报, 2015, 48(9), 85.
8 Xu P, Cai C B. Engineering Mechanics, 2011, 28 (3), 191(in Chinese).
徐鹏, 蔡成标. 工程力学, 2011, 28(3), 191.
9 Shaer A A, Duhamel D, Sab K, et al. Journal of Sound & Vibration, 2008, 316(1-5), 211.
10 Chen C, Duan Y D, Rui R, et al. Rock and Soil Mechanics, 2021, 42(4), 954(in Chinese).
陈成, 段永达, 芮瑞, 等. 岩土力学, 2021, 42(4), 954.
11 Chen C, Zhu S F, Zhang L, et al. Journal of Guangxi University (Natural Science Edition), 2024, 49(1), 1(in Chinese).
陈成, 朱思凡, 张磊, 等. 广西大学学报(自然科学版), 2024, 49(1), 1.
12 Zhou S H, Wang B L, Gong Q M. Journal of the China Railway Society, 2003, 25 (1), 96(in Chinese).
周顺华, 王炳龙, 宫全美. 铁道学报, 2003, 25(1), 96.
13 Deng P, Guo L, Cai Y Q, et al. Journal of Rock Mechanics and Engineering, 2015, 34 (3), 621(in Chinese).
邓鹏, 郭林, 蔡袁强, 等. 岩石力学与工程学报, 2015, 34(3), 621.
14 Indraratna B, Biabani M M, Nimbalkar S. Journal of Geotechnical & Geoenvironmental Engineering, 2014, 141(1), 04014081.
15 Hegde A, Sitharam T G. Geotextiles & Geomembranes, 2015, 43(2), 171
16 Leshchinsky B, Ling H. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 139(2), 340.
17 Leshchinsky B, Ling H. Geotextiles & Geomembranes, 2013, 36, 33.
18 Satval S R, Leshchinsky B, Han J, et al. Geotextiles & Geomembranes, 2018, 46(2), 190.
19 Hegde A, Sitharam T. International Journal of Geomechanics, 2015, 15(5), 04014080.
20 Sun Z, Zhang M X, Jiang S W. Chinese Journal of Geotechnical Engineering, 2015, 37(S2), 170(in Chinese).
孙州, 张孟喜, 姜圣卫. 岩土工程学报, 2015, 37(S2), 170.
21 Gao Ang, Zhang M X, Liu F, et al. Rock and Soil Mechanics, 2016, 37(8), 2213(in Chinese).
高昂, 张孟喜, 刘芳, 等. 岩土力学, 2016, 37(8), 2213.
22 First Railway Survey and Design Institute. Code for design of railway subgrade, China Planning Press, China, 2010 (in Chinese).
铁道第一勘察设计院. 铁路路基设计规范. 中国计划出版社, 2010.
23 Luo Qiang, Zhou Hua, Wang Zhijian. Railway Journal, 2004(3), 98(in Chinese).
罗强, 周华, 王之犍. 铁道学报, 2004(3), 98.
24 He Yanping, Zhang Sifeng, Wang Guanying, et al. Journal of Shandong Jianzhu University, 2008, 23(5), 431(in Chinese).
何艳平, 张思峰, 王冠英, 等. 山东建筑大学学报, 2008, 23(5), 431.
25 Saad B, Mitri H, Poorooshasb H. Journal of Transportation Engineering, 2006, 132(5), 402.
26 Deng Peng, Guo Lin, Cai Yuanqiang, et al. Journal of Rock Mechanics and Engineering, 2015, 34(3), 621(in Chinese).
邓鹏, 郭林, 蔡袁强, 等. 岩石力学与工程学报, 2015, 34(3), 621.
27 Chen Z. Research on dynamic response of high speed railway subgrade. Master’s Thesis, Graduate School of Chinese Academy of Sciences (Wuhan Institute of Geotechnical Mechanics), China, 2006 (in Chinese).
陈震. 高速铁路路基动力响应研究. 硕士学位论文, 中国科学院研究生院(武汉岩土力学研究所), 2006.
28 Chen C, McDowell G R. Proceedings of the Institution of Mechanical Engineers, Part F, Journal of Rail and Rapid Transit, 2016, 230(1), 117.
29 Chen C, Sun J, Rui R, et al. Journal of Railway Science and Engineering, 2019, 16(10), 2427 (in Chinese).
陈成, 孙建, 芮瑞, 等. 铁道科学与工程学报, 2019, 16(10), 2427.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[3] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[4] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[5] 马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
[6] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[7] 江亦然, 张东桥, 钱应平, 王腾强. 带槽高强钢板感应加热工艺的数值模拟与实验验证[J]. 材料导报, 2025, 39(19): 24080111-8.
[8] 陈学烨, 杨斌, 陈志, 苏菁. 隔热涂层表面高温气流冲击效应的3D数值模拟[J]. 材料导报, 2025, 39(18): 24080110-6.
[9] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[10] 汪宙, 陈爽, 马宗涛, 张天豪, 李继文, 晁霞. 非均衡底吹对铁碳熔池废钢熔化行为影响的模拟研究[J]. 材料导报, 2025, 39(14): 24060048-8.
[11] 赵卫平, 刘英健, 生兆川, 程赛, 徐旸. 三维细观早龄期混凝土导热性能数值模拟[J]. 材料导报, 2025, 39(10): 24040083-10.
[12] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[13] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[14] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[15] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed