Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24050069-13    https://doi.org/10.11896/cldb.24050069
  高分子与聚合物基复合材料 |
面向植入式生物电子的PEDOT基电极材料
王相雅1,2,3, 周琦2,3, 冉奋1,2,3,4,*
1 兰州理工大学储能研究院,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
4 兰州理工大学绿色能源与储能学院,兰州 730050
PEDOT-based Electrode Materials for Implantable Bioelectronics
WANG Xiangya1,2,3, ZHOU Qi2,3, RAN Fen1,2,3,4,*
1 Energy Storage Institute, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
4 School of Green Energy and Energy Storage, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 39120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着现代医疗技术的发展,生物电子学作为生物学与电子信息技术的交叉学科,在生物医用领域得到了广泛的关注。为了丰富和满足个性化医疗需求,植入式电极材料作为不可或缺的组成部分,为植入式生物电子的发展做出了贡献。本文围绕导电聚合物聚(3,4-乙烯二氧噻吩)(PEDOT)的导电机理、掺杂机理、掺杂剂的选择以及在生物电子领域的最新进展进行了综述,指出了具有多种用途的PEDOT基电极材料在植入式生物电子领域的发展潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王相雅
周琦
冉奋
关键词:  生物电子  导电聚合物  PEDOT  电极材料    
Abstract: With the development of modern medical technology, bioelectronics, as the intersection of biology and electronic information technology, has been widely concerned in the field of biomedicine. In order to enrich and meet the needs of personalized medicine, implantable electrode materials, as an indispensable component, have contributed to the development of implantable bioelectronics. This review focuses on the conductive mechanism, doping mechanism, dopant selection, and the latest progress of the conductive polymer poly(3, 4-ethylenedioxythiophene) (PEDOT) in the field of bioelectronics, and points out the development potential of PEDOT-based electrode materials with various applications in the field of implantable bioelectronics.
Key words:  bioelectronic    conductive polymer    PEDOT    electrode material
发布日期:  2025-10-27
ZTFLH:  TB324  
基金资助: 甘肃省科技计划项目(25JRRA135);中国博士后科学基金(2025MD774093);国家自然科学基金(52463013);兰州市科技计划项目(2025-2-56);兰州理工大学青年教师学科交叉研究培育项目
通讯作者:  *冉奋,博士,教授/博士研究生导师;兰州理工大学储能研究院、绿色能源与储能学院、材料科学与工程学院、省部共建有色金属先进加工与再利用国家重点实验室教师。研究方向包括活性可控聚合和大分子设计、新型能源材料和生物医用高分子材料。ranfen@163.com   
作者简介:  王相雅,兰州理工大学材料科学与工程学院博士后。目前主要研究领域为植入式能源存储材料和器件。
引用本文:    
王相雅, 周琦, 冉奋. 面向植入式生物电子的PEDOT基电极材料[J]. 材料导报, 2025, 39(20): 24050069-13.
WANG Xiangya, ZHOU Qi, RAN Fen. PEDOT-based Electrode Materials for Implantable Bioelectronics. Materials Reports, 2025, 39(20): 24050069-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050069  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24050069
1 Panda A K, Basu B. Materials Science and Engineering R: Reports, 2021, 146, 100630.
2 Ouyang H, Liu Z, Li N, et al. Nature Communications, 2019, 10(1), 1821.
3 Kim S, Baek S, Sluyter R, et al. EcoMat, 2023, 5(8), e12356.
4 Wang S L, Cui Q Y, Abiri P, et al. Science Advances, 2023, 9(42), eadj0540.
5 Jung Y H, Kim J U, Lee J S, et al. Advanced Materials, 2020, 32(16), 1907478.
6 Cui Y. Sensors, 2017, 17(10), 2289.
7 Park J, Lee Y, Kim T Y, et al. ACS Applied Electronic Materials, 2022, 4(4), 1449.
8 Koo J H, Song J K, Kim D H, et al. ACS Materials Letters, 2021, 3(11), 1528.
9 Chen K, Ren J Y, Chen C Y, et al. Nano Today, 2020, 35, 100939.
10 Sheng H W. Flexible biodegradable supercapacitors for implantable medical electronics. Ph. D. Thesis, Lanzhou University, China, 2023 (in Chinese).
盛鸿伟. 面向植入式医疗电子的柔性生物可降解超级电容器的研究. 博士学位论文, 兰州大学, 2023.
11 Huang X, Wang L, Wang H, et al. Small, 2019, 16(15), 1902827.
12 Komatsubara K, Suzuki H, Inoue H, et al. ACS Applied Nano Materials, 2022, 5(1), 1521.
13 Su L R, Wu Q H, Niu J Z, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(31), 11364.
14 Wu Q H, Zeng H Z, Wu Y Z, et al. Rare Metals, 2023, 42(12), 4212.
15 Niu J Z, Wang X Y, Wu Q H, et al. Journal of Colloid and Interface Science, 2025, 677, 68.
16 Qin L Q, Tao Q Z, El Ghazaly A, et al. Advanced Functional Materials, 2017, 28(2), 1703808.
17 Ghanbari R, Ghorbani S R. Journal of Energy Storage, 2023, 60, 106670.
18 Yang B C, Hao C X, Wen F H, et al. ACS Applied Materials & Interfaces, 2017, 9(51), 44478.
19 Nasajpour-Esfahani N, Dastan D, Alizadeh A A, et al. Journal of Industrial and Engineering Chemistry, 2023, 125, 14.
20 Zhang S M, Ling H N, Chen Y H, et al. Advanced Functional Materials, 2019, 30(6), 1906016.
21 Lee S, Ozlu B, Eom T, et al. Biosensors and Bioelectronics, 2020, 170, 112620.
22 Baker C, Wagner K, Wagner P, et al. Advances in Physics: X, 2021, 6(1), 1899850.
23 Guo B, Ma P X. Biomacromolecules, 2018, 19(6), 1764.
24 Yang B G. Preparation of polythiophene based hydrogel for cardiac tissue engineering. Ph. D. Thesis, Tianjin University, China, 2016 (in Chinese).
杨伯光. 聚噻吩基导电水凝胶研制及其在心肌组织工程中的应用研究. 博士学位论文, 天津大学, 2016.
25 Wang S, Sun Q, Gröning O, et al. Nature Chemistry, 2019, 11(10), 924.
26 Nezakati T, Seifalian A, Tan A, et al. Chemical Reviews, 2018, 118(14), 6766.
27 Eftekhari A, Li L, Yang Y. Journal of Power Sources, 2017, 347, 86.
28 Donahue M J, Sanchez-Sanchez A, Inal S, et al. Materials Science and Engineering R: Reports, 2020, 140, 100546.
29 Kayser L V, Lipomi D J. Advanced Materials, 2019, 31(10), 1806133.
30 Volkov A V, Wijeratne K, Mitraka E, et al. Advanced Functional Materials, 2017, 27(28), 1700329.
31 Chen L, Shen P J, Zhao T Y, et al. Small Methods, 2023, 8(7), 2300979.
32 Jiang Y W, Zhang Z T, Wang Y Y, et al. Science, 2022, 375(6587), 1411.
33 Nie S S, Li Z F, Yao Y Y, et al. Frontiers in Chemistry, 2021, 9, 803509.
34 Mitraka E, Jafari M J, Vagin M, et al. Journal of Materials Chemistry A, 2017, 5(9), 4404.
35 Dubal D P, Chodankar N R, Kim D H, et al. Chemical Society Reviews, 2018, 47(6), 2065.
36 Khan S, Narula A K. European Polymer Journal, 2016, 81, 161.
37 Rebetez G, Bardagot O, Affolter J, et al. Advanced Functional Materials, 2021, 32(5), 2105821.
38 Zhang H, Xu D Y, Zhang B, et al. Advanced Science, 2024, 2400827.
39 Yuan Q C, Qin C L, Xu D H, et al. ACS Sensors, DOI: 10. 1021/acssensors. 4c02755.
40 Du L J, Li T, Jin F, et al. Journal of Colloid and Interface Science, 2020, 559, 65.
41 Zhang Z Y, Tian G Z, Duan X G, et al. ACS Applied Bio Materials, 2021, 4(7), 5556.
42 Zhang W Y, Su Z, Zhang X C, et al. View, 2022, 3(5), 20220030.
43 Lo L W, Zhao J Y, Wan H C, et al. ACS Applied Materials & Interfaces, 2021, 13(18), 21693.
44 Hofmann A I, Katsigiannopoulos D, Mumtaz M, et al. Macromolecules, 2017, 50(5), 1959.
45 Wang W, Cui M, Song Z L, et al. RSC Advances, 2016, 6(91), 88411.
46 Lin H A, Zhu B, Wu Y W, et al. Advanced Functional Materials, 2018, 28(12), 1703890.
47 Sheng L, Fang D, Wang X, et al. Chemical Engineering Journal, 2020, 401, 126123.
48 Heydari G M, Dautel B, Chowdhury K. Advanced Functional Materials, 2024, 35(10), 2418331.
49 Han R, Wang G X, Xu Z Y, et al. Biosensors and Bioelectronics, 2022, 164, 112317.
50 Wang W Q, Han R, Chen M, et al. Analytical Chemistry, 2021, 93(19), 7355.
51 Zheng E J, Jain P, Dong H, et al. ACS Applied Polymer Materials, 2019, 1(11), 3103.
52 Harris A R, Molino P J, Paolini A G, et al. Electrochimica Acta, 2016, 197, 99.
53 Skorupa M, Więcławska D, Czerwińska-Główka D, et al. Polymers, 2021, 13(12), 1948.
54 Chung J, Khot A, Savoie B M, et al. ACS Macro Letters, 2020, 9(5), 646.
55 Song J. Research on performance of PEDOT composite electrode materials and supercapacitors. Ph. D. Thesis, Heilongjiang University, China, 2021 (in Chinese).
宋佳. PEDOT复合电极材料及其超级电容器性能的研究. 博士学位论文, 黑龙江大学, 2021.
56 Xiao B H, Li J X, Xu H Y, et al. Angewandte Chemie International Edition, 2023, 62(39), e202309614.
57 Du X J, Yang L Y, Liu N. Small Science, 2023, 3(7), 2300008.
58 Sheng L Y, Fang D L, Wang X L, et al. Chemical Engineering Journal, 2020, 401, 126123.
59 Skorupa M, Karoń K, Marchini E, et al. ACS Applied Materials & Interfaces, 2024, 16(18), 23253.
60 Eun J, Kim D, Kim F S. ACS Applied Polymer Materials, 2023, 5(7), 5495.
61 Wang X Y, Niu J Z, Hadi M K, et al. Journal of Energy Storage, 2024, 99, 113263.
62 Mantione D, Del Agua I, Schaafsma W, et al. Macromolecular Bio-science, 2016, 16(8), 1227.
63 Mantione D, Del Agua I, Sanchez-Sanchez A, et al. Polymers, 2017, 9(12), 354.
64 Del Agua I, Marina S, Pitsalidis C, et al. ACS Omega, 2018, 3(7), 7424.
65 Xiao Y H, Li C M, Toh M L, et al. Journal of Applied Electrochemistry, 2008, 38(12), 1735.
66 Li Y Q, Chen C, Han L, et al. International Journal of Biological Macromolecules, 2024, 254, 127852.
67 Leprince M, Mailley P, Choisnard L, et al. Carbohydrate Polymers, 2023, 301, 120345.
68 Wang X Y, Hadi M K, Niu J Z, et al. Macromolecules, 2023, 56(12), 4387.
69 Matsuoka R, Kondo T, Yuasa M. ECS Transactions, 2013, 50(12), 369.
70 Wang X Y, Yu M M, Hadi M K, et al. Nature Communications, 2024, 15(1), 1.
71 Wang X Y, Niu J Z, Hadi M K, et al. Advanced Healthcare Materials, 2025, 14, 2401134.
72 Yang B G, Yao F L, Ye L, et al. Biomaterials Science, 2020, 8(11), 3173.
73 Yu C J, Yue Z W, Zhang H, et al. Advanced Functional Materials, 2023, 33(15), 2211023.
74 Dominguez A A, Casado N, Fernandez M, et al. Small, 2024,20(22), 2307536.
75 Sim H J, Choi C, Lee D Y, et al. Nano Energy, 2018, 47, 385.
76 Wang X Y, Zhang W J, Ran F, et al. Chemical Engineering Journal, 2023, 452, 139491.
77 Bianchi M, Guzzo S, Lunghi A, et al. ACS Applied Materials & Interfaces, 2023, 15(51), 59224.
78 Lu Z Y, Xu S W, Wang H, et al. ACS Applied Bio Materials, 2021, 4(6), 4872.
79 Xia M L, Liu J W, Kim B J, et al. Advanced Science, 2024, 11(1), 2304871.
80 Zhao P F, Zhang R M, Tong Y H, et al. ACS Applied Materials & Interfaces, 2020, 12(49), 55083.
81 Janzakova K, Balafrej I, Kumar A, et al. Nature Communications, 2023, 14(1), 8143.
82 Jiang Y W, Zhang Z T, Wang Y X, et al. Science, 2022, 375(6587), 1411.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[3] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[4] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[5] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[6] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[7] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[8] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[9] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[10] 常龙飞, 杨海林, 金珂, 沈锦杰, 朱子才, 胡颖. 基于PEDOT:PSS电极的柔性透明IPMC材料研究[J]. 材料导报, 2023, 37(6): 21060011-8.
[11] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[12] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[13] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[14] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[15] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed