Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110036-8    https://doi.org/10.11896/cldb.24110036
  无机非金属及其复合材料 |
生物油基再生剂对老化沥青流变性能恢复规律研究
张万国1, 万贵稳2,*, 乔元辉1, 张吉哲3,*, 熊远顺1
1 中铁十四局集团有限公司,济南 250101
2 山东建筑大学材料科学与工程学院,济南 250101
3 山东大学齐鲁交通学院,济南 250100
Study on the Recovery Law of Rheological Properties of Aged Asphalt with Bio-Oil-based Recycling Agents
ZHANG Wanguo1, WAN Guiwen2,*, QIAO Yuanhui1, ZHANG Jizhe3,*, XIONG Yuanshun1
1 China Railway 14th Bureau Group Co., Ltd., Jinan 250101, China
2 School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China
3 School of Qilu Transportation, Shandong University, Jinan 250100, China
下载:  全 文 ( PDF ) ( 7835KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对生物油来源广泛、性能不稳定且不同生物油对老化沥青流变性能影响及作用机理尚不明晰等问题,将蓖麻油(CO)、地沟油(GO)、大豆油(SO)三种不同来源的生物油作为再生剂基础组分,并添加增塑剂、渗透剂、润湿剂制备生物油基沥青再生剂,对比分析最佳掺量下再生沥青流变性能恢复规律及其作用机理。结果表明:三种再生剂的红外光谱特征峰基本一致,地沟油基再生剂(GOR)中芳香族含量高于蓖麻油基再生剂(COR)和大豆油基再生剂(SOR),酯和酚的含量低于COR和SOR。再生沥青中再生剂和沥青是物理共混,未发生化学反应。地沟油基再生沥青(GORA)的温度和频率敏感性均高于蓖麻油基再生沥青(CORA)和大豆油基再生沥青(SORA),SORA低温性能优于CORA和GORA。再生沥青复数模量仍高于基质沥青,相位角小于基质沥青,SOR与老化沥青的相容性低于COR和GOR。再生剂可使老化沥青蠕变劲度模量(S)减小,蠕变速率(m)增大,有效提高老化沥青的柔性变形能力,三种再生沥青低温连续分级温度高于基质沥青,CORA低温连续分级温度高于GORA和SORA。总体而言,COR和GOR再生效果优于SOR。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张万国
万贵稳
乔元辉
张吉哲
熊远顺
关键词:  沥青  生物油  再生剂  流变性能  微观性能    
Abstract: Considering the wide availability yet inconsistent performance of bio-oils, along with the unclear mechanisms by which different bio-oils inf-luence the rheological properties of aged asphalt, utilized castor oil (CO), gutter oil (GO), and soybean oil (SO) as base components for bio-oil-based rejuvenators. By incorporating plasticizers, penetrants, and wetting agents, tailored rejuvenators were developed. A comparative analysis was conducted to investigate the recovery behavior and underlying mechanisms of rheological properties in rejuvenated asphalt at optimal dosages. The results indicate that the infrared spectral characteristic peaks of the three rejuvenators are largely consistent. The aromatic content in the gutter oil-based rejuvenator (GOR) is higher than that in the castor oil-based rejuvenator (COR) and soybean oil-based rejuvenator (SOR), while the ester and phenol contents in GOR are lower than those in COR and SOR. The rejuvenator and asphalt show physical blending without chemical reactions occurring in the rejuvenated asphalt. The temperature and frequency sensitivities of gutter oil-based rejuvenated asphalt (GORA) are higher than those of castor oil-based rejuvenated asphalt (CORA) and soybean oil-based rejuvenated asphalt (SORA), while SORA demonstrates superior low-temperature performance compared to CORA and GORA. The complex modulus of the rejuvenated asphalt remains higher than that of the virgin asphalt, and the phase angle is lower than that of the virgin asphalt. The compatibility of SOR with aged asphalt is inferior to that of COR and GOR. The creep stiffness modulus (S) of the aged asphalt decreases, while the creep rate (m) increases with the addition of rejuvenators, thereby effectively enhancing the flexible deformation capacity of the aged asphalt. The low-temperature conti-nuous grading temperatures of the three rejuvenated asphalts are higher than that of the virgin asphalt, with CORA exhibiting a higher low-tempe-rature continuous grading temperature than GORA and SORA. Overall, COR and GOR demonstrate better rejuvenation effects compared to SOR.
Key words:  asphalt    bio-oil    rejuvenator    rheological property    microscopic property
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  U414  
基金资助: 国家自然科学基金(52478457)
通讯作者:  *万贵稳,硕士,山东建筑大学材料科学与工程学院实验员。目前主要从事废旧沥青路面再生方面的工作。13964@sdjzu.edu.cn;张吉哲,博士,山东大学齐鲁交通学院副研究员,硕士研究生导师。目前主要从事沥青混合料细观力学、新型路面材料、废旧路面材料再生利用等方面的研究工作。jizhe.zhang@sdu.edu.cn   
作者简介:  张万国,中铁十四局集团有限公司正高级工程师。目前主要从事岩土工程方面的研究工作。
引用本文:    
张万国, 万贵稳, 乔元辉, 张吉哲, 熊远顺. 生物油基再生剂对老化沥青流变性能恢复规律研究[J]. 材料导报, 2025, 39(22): 24110036-8.
ZHANG Wanguo, WAN Guiwen, QIAO Yuanhui, ZHANG Jizhe, XIONG Yuanshun. Study on the Recovery Law of Rheological Properties of Aged Asphalt with Bio-Oil-based Recycling Agents. Materials Reports, 2025, 39(22): 24110036-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110036  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110036
1 Tao Z, Shen S, Yu H, et al. Construction and Building Materials, 2023, 384, 131297.
2 Zhang W, Li Q, Wang J, et al. Journal of Cleaner Production, 2023, 414, 137758.
3 Liu F, Liu P, Zhang X, et al. Construction and Building Materials, 2023, 408, 133798.
4 Xu N, Wang H, Wang H, et al. Journal of Cleaner Production, 2023, 385, 135427.
5 Xu J Z, Zhang B J, Zhang D P. Bulletin of the Chinese Ceramic Society, 2021, 40(12), 4187(in Chinese).
徐金枝, 张滨焌, 张德鹏. 硅酸盐通报, 2021, 40(12), 4187.
6 Zhang J Z, Guo C C, Hu X L, et al. Materials Reports, 2023, 37(24), 152(in Chinese).
张吉哲, 郭晨晨, 胡学亮, 等. 材料导报, 2023, 37(24), 152.
7 Jain S, Chandrappa A K. Environmental Science and Pollution Research International, 2023, 30(32), 77981.
8 Li D, Ding Y, Wang J, et al. Journal of Cleaner Production, 2023, 414, 137621.
9 Liu F, Wang Q, Zhang X, et al. Materials Reports 2022, 36(16), 91(in Chinese).
刘芳, 王旗, 张翛, 等. 材料导报, 2022, 36(16), 91.
10 Bao C, Zheng C, Xu Y, et al. Journal of Cleaner Production, 2022, 339, 130761.
11 Guo M, Liang M, Liu H, et al. Materials and Structures, 2023, 56(5), 99.
12 Wang H N, Xu N, Chen Y, et al. China Journal of Highway and Transport, 2023, 36(5), 1(in Chinese).
汪海年, 徐宁, 陈玉, 等. 中国公路学报, 2023, 36(5), 1.
13 Luo H Y, Huang X M. China Journal of Highway and Transport, 2021, 34(10), 98(in Chinese).
罗浩原, 黄晓明. 中国公路学报, 2021, 34(10), 98.
14 Pei Z, Yi J, Xu M, et al. Journal of Cleaner Production, 2023, 388, 135855.
15 Lv S, Liu J, Peng X, et al. Journal of Cleaner Production, 2021, 295, 126449.
16 Moins B, Hernando D, Buyle M, et al. Resources, Conservation and Recycling, 2022, 177, 106014.
17 El-Shorbagy A M, El-Badawy S M, Gabr A R. Construction and Building Materials, 2019, 220, 228.
18 Kabir S F, Mousavi M, Fini E H. Journal of Cleaner Production, 2020, 252, 119856.
19 Gong M, Yang J, Zhang J, et al. Construction and Building Materials, 2016, 105, 35.
20 Tang B M, Cao X X, Zhu H Z, et al. China Journal of Highway and Transport, 2019, 32(4), 207(in Chinese).
唐伯明, 曹芯芯, 朱洪洲, 等. 中国公路学报, 2019, 32(4), 207.
21 Feng X J, Fu H. Journal of Building Materials, 2024, 27(1), 37(in Chinese).
冯新军, 傅豪. 建筑材料学报, 2024, 27(1), 37.
22 Lv S, Liu J, Peng X, et al. Journal of Cleaner Production, 2021, 320, 128770.
23 Zhang R, Shi Q, Hu P, et al. Construction and Building Materials, 2023, 408, 133564.
24 Ye Q, Yang Z, Lv S, et al. Journal of Cleaner Production, 2023, 419, 138238.
25 Wang J, Lv S, Liu J, et al. Journal of Cleaner Production, 2023, 385, 135593.
26 Cao Z, Chen M, Liu Z, et al. Construction and Building Materials, 2019, 215, 709.
27 Li Q, Lu Y, Wang J Q, et al. Journal of Traffic and Transportation Engineering, 2022, 22(4), 102(in Chinese).
李强, 陆杨, 王家庆, 等. 交通运输工程学报, 2022, 22(4), 102.
28 Yang C. Study on selective absorption behavior and suppression method of bituminous components for steel slag. Master's Thesis, Wuhan University of Technology, China, 2019(in Chinese).
杨超. 钢渣对沥青组分选择性吸收行为与抑制方法研究. 硕士学位论文, 武汉理工大学, 2019.
29 Ma X Y. Study on asphalt-filler interaction and prediction of asphalt mastic performance. Ph. D. Thesis, Chang’an University, China, 2019(in Chinese).
马晓燕. 沥青-填料交互作用效应与沥青胶浆性能预估研究. 博士学位论文, 长安大学, 2019, 162.
30 Ma X, Chen H, Gui C, et al. Construction and Building Materials, 2019, 227, 116659.
31 Wang F C. Science Technology and Engineering, 2022, 22(5), 2002(in Chinese).
王枫成. 科学技术与工程, 2022, 22(5), 2002.
32 Wang H N, Zheng W H, You Z P, et al. Journal of Traffic and Transportation Engineering, 2023, 23(1), 8(in Chinese).
汪海年, 郑文华, 尤占平, 等. 交通运输工程学报, 2023, 23(1), 8.
33 Kuang D L, Ma X Y, Ma X Y, et al. Materials Reports, 2024, 38(2), 276(in Chinese).
况栋梁, 马小军, 马晓燕, 等. 材料导报. 2024, 38(2), 276.
34 Yang L J, Long N Q, Wang L, et al. Journal of Building Materials, 2022, 25(12), 1313(in Chinese).
杨丽娟, 龙念泉, 王岚, 等. 建筑材料学报, 2022, 25(12), 1313.
[1] 高英力, 李昀博, 田维伟, 朱俊材, 廖美捷, 王蒴. 胶粉改性沥青预处理技术研究进展[J]. 材料导报, 2025, 39(9): 24040022-10.
[2] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[3] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[4] 朱燕丽, 马川义, 张吉哲, 范秀泽, 何亮, 姚占勇. 沥青胶浆-集料界面水盐侵蚀损伤与多因素影响规律研究[J]. 材料导报, 2025, 39(6): 24010156-8.
[5] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[6] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[7] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[8] 王欣宇, 惠迎新, 徐新强, 李博文, 顾士周. 盐蚀作用对钢渣-SBS/胶粉复合改性沥青界面粘附特性的影响[J]. 材料导报, 2025, 39(23): 24060230-9.
[9] 王朝辉, 马健云, 张志强, 张莹, 陈绍昌. 碎石封层用树脂基改性乳化沥青调控制备及性能[J]. 材料导报, 2025, 39(23): 24110232-8.
[10] 沙东, 李根, 王芳, 唐民, 刘乙丁. 基于BBR试验的高模量沥青低温本构模型的建立与评价[J]. 材料导报, 2025, 39(22): 24080054-7.
[11] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[12] 黄耀英, 方晨, 邵成羽, 李泽鹏, 朱赵辉. 非饱和水工混凝土冻融劣化微观孔隙结构与宏观性能关系研究[J]. 材料导报, 2025, 39(19): 24080219-7.
[13] 林俊涛, 钟超, 王宗瑞, 徐方, 朱晓斌. 地聚物乳化沥青冷再生混合料的强度发展特征与性能研究[J]. 材料导报, 2025, 39(18): 24050037-6.
[14] 高英力, 王蒴, 朱俊材, 李岳林, 田维伟, 詹明涛, 黄河. 基于分子模拟的增塑剂对沥青再生机理研究[J]. 材料导报, 2025, 39(18): 24060193-9.
[15] 杨正辉, 朱涛, 张东生, 杨秋宁, 毛明杰. 纳米Al2O3和钢纤维复合增强煤矸石-矿渣基地聚合物灌浆材料的性能研究[J]. 材料导报, 2025, 39(15): 24050076-11.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed