Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100234-7    https://doi.org/10.11896/cldb.24100234
  金属与金属基复合材料 |
芳纶纤维对铝基复合材料制动盘配套闸片摩擦磨损性能的影响
冀运东1,2, 张鹏伟1, 崔唐茵3, 曹东风2,4, 黄端平1,*
1 武汉理工大学材料科学与工程学院,武汉 430070
2 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
3 山东工业陶瓷研究设计院有限公司,山东 淄博 255000
4 先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室),广东 佛山 528000
Effect of Aramid Fiber on Friction and Wear Properties of Brake Pads of Aluminum Matrix Composite Brake Discs
JI Yundong1,2, ZHANG Pengwei1, CUI Tangyin3, CAO Dongfeng2,4, HUANG Duanping1,*
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
3 Shandong Industrial Ceramics Research and Design Institute Co., Ltd., Zibo 255000, Shandong, China
4 Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528000, Guangdong, China
下载:  全 文 ( PDF ) ( 57142KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用铝基金属复合材料(AMMC)制动盘可减轻地铁车辆自重,但AMMC耐热性较差,适用于传统铸铁制动盘的制动闸片无法直接应用于AMMC盘上,因此需开发一种与AMMC相匹配的闸片。芳纶纤维具有耐热性、耐磨性较好等优点,将其加入闸片中可能使AMMC盘高温时摩擦性能有所改善。本工作设计、制备了一种与AMMC制动盘相匹配的树脂基闸片材料,并研究了压力、速度、温度对不同芳纶含量闸片制动AMMC盘摩擦磨损性能的影响。结果表明,芳纶纤维有助于摩擦层的形成,提高了摩擦层的强度,加入芳纶纤维后摩擦界面接触形式由点接触转变成面接触,降低了闸片摩擦系数对压力变化的敏感性和闸片表面最高温度,抑制了AMMC盘材料的转移,保护了闸片和制动盘表面的完整性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冀运东
张鹏伟
崔唐茵
曹东风
黄端平
关键词:  芳纶纤维  铝基复合材料制动盘  闸片  摩擦磨损    
Abstract: The use of aluminum-based metal composite (AMMC) brake discs can reduce the weight of metro vehicles, but their heat resistance is poor, and the brake pads suitable for conventional cast iron brake discs cannot be directly applied to AMMC discs, so it is necessary to develop matching brake pads. Aramid fibers have the advantages of better heat resistance and abrasion resistance, and the incorporation of aramid fibers into brake pads may improve their friction performance at high temperatures. In this work, a resin-based brake pad material matched with AMMC brake disc was developed, and the effects of pressure, speed and temperature on the friction and wear properties of brake AMMC disc with diffe-rent aramid content were studied. The results showed that aramid fiber promoted the formation of afriction layer and improved its strength. The friction interface contact form changed from point contact to surface contact after adding aramid fibers, which reduced the sensitivity of the friction coefficient of the brake pad to pressure change and the maximum temperature of the brake pad surface, inhibited the material transfer of the AMMC disc, and protected the surface integrity of the brake pad and brake disc.
Key words:  aramid fiber    aluminum-based metal matrix composite brake disc    brake pad    frictional and wear
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TQ323.5  
  TB323.1  
基金资助: 国家自然科学基金(52273080)
通讯作者:  *黄端平,博士,武汉理工大学材料科学与工程学院副教授。主要从事电子元器件及其基础材料、陶瓷基复合材料和摩擦材料的研究工作。Duanpinghuang@sina.com   
作者简介:  冀运东,博士,硕士研究生导师,武汉理工大学材料科学与工程学院副教授。主要从事复合材料结构设计与可靠性分析、新型改性氟硅化合物合成与应用和树脂基摩擦材料的研究工作。
引用本文:    
冀运东, 张鹏伟, 崔唐茵, 曹东风, 黄端平. 芳纶纤维对铝基复合材料制动盘配套闸片摩擦磨损性能的影响[J]. 材料导报, 2025, 39(21): 24100234-7.
JI Yundong, ZHANG Pengwei, CUI Tangyin, CAO Dongfeng, HUANG Duanping. Effect of Aramid Fiber on Friction and Wear Properties of Brake Pads of Aluminum Matrix Composite Brake Discs. Materials Reports, 2025, 39(21): 24100234-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100234  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100234
1 Patel M, Pardhi B, Chopara S, et al. Carbon, 2018, 1(2500), 151.
2 Li G, Yan Q. Tribology Letters, 2015, 60, 1.
3 Aranke O, Algenaid W, Awe S, et al. Coatings, 2019, 9(9), 552.
4 Wu L. Materials Reports, 2014, 28(13), 52 (in Chinese).
吴玲. 材料导报, 2014, 28(13), 52.
5 Srivastava A, Dixit A R, Tiwari S. International Journal of Advance Research and Innovation, 2014, 2(2), 516.
6 Adebisi A, Maleque M, Rahman M M. International Journal of Automotive and Mechanical Engineering, 2011, 4, 471.
7 Viswanatha B, Kumar M, Basavarajappa S, et al. Tribology in Industry, 2014, 36(1), 40.
8 Li Y L, Sun L, Cao L X, et al. Materials Reports, 2020, 34(S1), 361 (in Chinese).
李亚林, 孙垒, 曹柳絮, 等. 材料导报, 2020, 34(S1), 361.
9 Zhang N, Jin W W, Huang B, et al. Journal of Locomotive and Vehicle Technology, 2024, 60(3), 36 (in Chinese).
张宁, 金文伟, 黄彪, 等. 机车车辆工艺, 2024, 60(3), 36.
10 Sheng H, Wang Z, Shao J, et al. Materials for Mechanical Engineering, 2016, 1, 1.
11 Kumar P D, Gnanaraj S D. Engineering Research Express, 2023, 5(2), 022002.
12 Wang Y, Zhang J. Lubricants, 2023, 11(8), 317.
13 Balakrishnan E, Meganathan S, Balachander M, et al. Materials Today:Proceedings, 2019, 16, 1067.
14 Yashwhanth S, Mohan M M, Anandhan R, et al. Materials Today:Proceedings, 2021, 46, 7329.
15 Yang Z H, Xu Z Q, Liu L, et al. Textile Accessories, 2020, 47(2), 45 (in Chinese).
杨战厚, 徐子勤, 刘理, 等. 纺织器材, 2020, 47(2), 45.
16 Aranganathan N, Mahale V, Bijw J. Wear, 2016, 354, 69.
17 Ahmadijokani F, Shojaei A, Dordanihaghighi S, et al. Wear, 2020, 452, 203280.
18 Ji Y D, Chen Z, Li S X, et al. China Plastics Industry, 2023, 51(7), 63 (in Chinese).
冀运东, 陈震, 李书欣, 等. 塑料工业, 2023, 51(7), 63.
[1] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[2] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[3] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[4] 贾峰峰, 陆赵情, 赵会媚, 杨朋波, 庞瑞雪, 陈维婧, 陈境锋, 花莉. 废弃芳纶纤维资源高值化回用技术及应用展望[J]. 材料导报, 2025, 39(21): 24120208-7.
[5] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[6] 李锐, 李瑞剑, 江洪渠, 罗圆, 赵琪, 易健宏, 刘意春. 钨基合金靶材的粉末冶金制备工艺及其磁控溅射薄膜的研究进展[J]. 材料导报, 2025, 39(17): 24060122-7.
[7] 张俊潇, 李振, 任志英, 马国政, 赵海朝, 王海斗. 自润滑轴承及其寿命研究现状与未来展望[J]. 材料导报, 2025, 39(17): 24070030-7.
[8] 胡少青, 岳赟, 平静艳, 邓四二, 杜三明. 不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2025, 39(14): 24070140-7.
[9] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[10] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[11] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[12] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[13] 肖金坤, 李天天, 陈娟, 张超. 高速列车铜基摩擦材料的成分设计研究进展[J]. 材料导报, 2023, 37(23): 22030270-11.
[14] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[15] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed