Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24120208-7    https://doi.org/10.11896/cldb.24120208
  高分子与聚合物基复合材料 |
废弃芳纶纤维资源高值化回用技术及应用展望
贾峰峰1,2,3,*, 陆赵情1,2,3,*, 赵会媚1,2, 杨朋波1, 庞瑞雪1, 陈维婧1, 陈境锋1, 花莉1,3
1 陕西科技大学轻工科学与工程学院,西安 710021
2 齐鲁工业大学(山东省科学院),济南 250353
3 陕西帕若德新材料科技有限公司,西安 710075
High-value Reuse Technology and Application Prospect of Waste Aramid Fiber Resources
JIA Fengfeng1,2,3,*, LU Zhaoqing1,2,3,*, ZHAO Huimei1,2, YANG Pengbo1, PANG Ruixue1, CHEN Weijing1, CHEN Jingfeng1, HUA Li1,3
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
2 Qilu Univeristy of Technology(Shandong Academy of Science), Jinan 250353, China
3 Shaanxi Parade Advanced Materials Technology Co., Ltd., Xi’an 710075, China
下载:  全 文 ( PDF ) ( 56045KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球芳纶纤维产能的不断扩张及在航空航天、国防军工、轨道交通、特种防护等领域的广泛应用,废弃芳纶纤维资源快速增长。作为芳纶纤维的产能大国和消费大国,伴随着军警防弹衣、防护服换代工程的展开,我国废弃芳纶纤维的高值化回用需求十分迫切。然而,芳纶纤维分子链规整、结晶度高、性质稳定,普通工艺难以回收处理,给废弃芳纶纤维资源的处置带来了巨大挑战。基于此,本文对废弃芳纶纤维资源已公开报道的回用技术进行了归纳,探讨了裂解法、解聚法、碳化法、浆粕法等高值化利用技术路径进展,最后对废弃芳纶纤维资源的高值化回用技术做出了应用展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾峰峰
陆赵情
赵会媚
杨朋波
庞瑞雪
陈维婧
陈境锋
花莉
关键词:  废弃化纤  芳纶纤维  回用技术  高值化    
Abstract: With the expansion productive capacity and the wide application in aerospace, military weapon, rail transit, special protection of aramid fiber, waste aramid fibersare growing rapidly. As a big producer and consumer country of aramid fiber, with the development of military, police body armor, and protective clothing replacement project, the high value reuse of waste aramid fiber is urgent and critical in China. However, due to aramid fiber’s regular molecular chain, high crystallinity, ideal mechanical performance, the traditional method is difficult to recycle it, Herein, in this summary, the recycling technology of waste aramid fiber resources was reviewed, and the progress of high value utilization technology included pulp method, cracking method, depolymerization method and carbonization method was discussed. Finally, the application of high value reuse technology of waste aramid fiber resources is prospected.
Key words:  waste chemical fiber    aramid fiber    reuse technology    high value processing
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TS758  
基金资助: 国家自然科学基金(22178211;22378248);陕西省秦创原总窗口四链融合项目(2024PT-ZCK-09);济南市新高校20条引进创新团队(202333012);西安市未央区秦创原科技成果转化项目(202405);陕西省重点研发计划(2024GX-YBXM-331);中国博士后科学基金面上项目(2025M772524)
通讯作者:  *贾峰峰,讲师、师资博士后,主要从事纸基功能材料及造纸新技术研究。18829445247@163.com
陆赵情,博士、二级教授、博士研究生导师,陕西科技大学副校长。目前,主要从事高性能纤维纸基功能材料及特种加工纸的研究工作,实现了芳纶绝缘纸、聚酰亚胺纸的产业化。luzhaoqing302@163.com   
引用本文:    
贾峰峰, 陆赵情, 赵会媚, 杨朋波, 庞瑞雪, 陈维婧, 陈境锋, 花莉. 废弃芳纶纤维资源高值化回用技术及应用展望[J]. 材料导报, 2025, 39(21): 24120208-7.
JIA Fengfeng, LU Zhaoqing, ZHAO Huimei, YANG Pengbo, PANG Ruixue, CHEN Weijing, CHEN Jingfeng, HUA Li. High-value Reuse Technology and Application Prospect of Waste Aramid Fiber Resources. Materials Reports, 2025, 39(21): 24120208-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120208  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24120208
1 He A, Xing T, Liang Z, et al. Advanced Fiber Materials, 2024, 6(1), 3.
2 Nagaraju G, Sekhar S C, Yu J S. Advanced Energy Materials, 2018, 8(7), 1702201.
3 Wang S P, Wu B Z, He Z. Journal of Textile Research, 2021, 42(1), 34(in Chinese).
汪少朋, 吴宝宅, 何洲. 纺织学报, 2021, 42(1), 34.
4 Miao R, Yin Y, Ding Y, et al. ACS Macro Letters, 2024, 13(11), 1515.
5 Han F, Lang C H, Qiu Y P. Journal of Textile Research, 2022, 43(3), 96(in Chinese).
韩非, 郎晨宏, 邱夷平. 纺织学报, 2022, 43(3), 96.
6 Yang B, Wang L, Zhang M, et al. Advanced Functional Materials, 2020, 30(22), 2000186.
7 Cao K, Siepermann C P, Yang M, et al. Advanced Functional Materials, 2013, 23(16), 2072.
8 Luo J, Wen Y, Li T, et al. Advanced Functional Materials, 2024, 34(7), 2310008.
9 Zhao J Y. Procuratorial situation, 2013(7), 69(in Chinese).
赵进一. 检察风云, 2013(7), 69.
10 Sun H B. Dyeing and Finishing Techniques, 2022, 44(1), 61(in Chinese).
孙淮滨. 染整技术, 2022, 44(1), 61.
11 Lv F, Lu X, Song J, et al. Research on Chemical Intermediates, 2022, 48(11), 4815.
12 Li Z Y, Yan K, Wang W W. Journal of Radiation Research and Radiation Processing, 2024, 42(5), 31(in Chinese).
李志尧, 严坤, 王雯雯, 等. 辐射研究与辐射工艺学报, 2024, 42(5), 31.
13 Liao Y, Chen C, Wei B, et al. Polymers for Advanced Technologies, 2022, 33(10), 3540.
14 Song Y S. Preparation of recycled aramid nanofibers and the composite with waterborne polyurethane. Ph. D. Thesis, Beijing University of Chemical Technology, China, 2024(in Chinese).
宋羽裳. 回收芳纶纳米纤维的制备及与水性聚氨酯的复合研究. 博士学位论文, 北京化工大学, 2024.
15 Chen H H, Jiang H L. Textile industry and technology, 2023, 52(4), 133(in Chinese).
陈海宏, 江华丽. 轻纺工业与技术, 2023, 52(4), 133.
16 Burch R R, Sweeny W, Schmidt H W, et al. Macromolecules, 1990, 23(4), 1065.
17 Yang M, Cao K, Sui L, et al. ACS Nano, 2011, 5(9), 6945.
18 Yang B, Wang L, Zhang M, et al. ACS Nano, 2019, 13(7), 7886.
19 Yang B, Li W, Zhang M, et al. ACS Nano, 2021, 15(4), 7195.
20 Chen H J, Bai Q Y, Liu M C, et al. Green Chemistry, 2021, 23(19), 7646.
21 Kim H C, Sodano H A. Advanced Functional Materials, 2023, 33(4), 2208661.
22 Patel A, Wilcox K, Li Z, et al. ACS Applied Materials & Interfaces, 2020, 12(23), 25756.
23 Tan J, Luo Y, Zhang M, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16895.
24 Shu R, Zhang Q, Zhao Y B, et al. Separation and Purification Technology, 2022, 285, 299121692.
25 Liu Y, Zou W, Zhao N, et al. Nature Communications, 2023, 14(1), 5342.
26 Okajima I, Okamoto H, Sako T. Polymer Degradation and Stability, 2019, 169, 16222.
27 Okajima I, Okamoto H, Sako T. Polymer Degradation and Stability, 2021, 265, 187109547.
28 Xie F, Jia F, Zhuo L, et al. Journal of Materials Science, Materials in Electronics, 2021, 32(6), 7090.
29 Karthik D, Baheti V, Militky J, et al. Materials, 2021, 14(21), 6433.
30 Cheng J, Lin Z, Wu D, et al. Journal of Hazardous Materials, 2022, 368, 436129150.
31 Castro-Muñiz A, Suárez-García F, Martínez-Alonso A, et al. ChemSusChem, 2013, 6(8), 1406.
32 Yu A J, Fan Z P, Jin G L, et al. Hi-Tech Fiber & Application, 2021, 46(1), 62(in Chinese).
于安军, 范志平, 靳高岭, 等. 高科技纤维与应用, 2021, 46(1), 62.
33 Zhang S F, Sun Z X, Dou W W, et al. China Pulp & Paper, 2013,32(6), 37(in Chinese).
张素风, 孙召霞, 豆莞莞, 等. 中国造纸, 2013, 32(6), 37.
34 You X L, Liu Z F. Polymer Materials Science and Engineering, 2003, 19(3), 45(in Chinese).
尤秀兰, 刘兆峰. 高分子材料科学与工程, 2003, 19(3), 45.
35 Saliani S S, Tavassoti P, Baaj H, et al. Construction and Building Materials, 2021, 280, 122554.
36 Kong H, Ding H, Yu M, et al. Polymer Composites, 2019, 40(S1), 476.
37 Zhou Y J. Surface modification of submicron aramid pulp fiber and study on structure and properties of rubber-based composits, Ph. D. Thesis, Beijing University of Chemical Technology, China, 2017(in Chinese).
周亚军. 次微米芳纶浆粕短纤维的表面改性及其填充橡胶基复合材料结构与性能的研究. 博士学位论文, 北京化工大学, 2017.
38 Yang B, Lu Z, Zhang M, et al. Journal of Applied Polymer Science, 2016, 133(13),
39 Wang Y, Huang Y W, Wang X W, et al. China Synthetic Fiber Industry, 2010, 33(6), 21(in Chinese).
王宜, 黄毅汪, 王习文, 等. 合成纤维工业, 2010, 33(6), 21.
40 Bai J H, Wang H, Wang Y, et al. Textile Research Journal, 2018, 881559
41 齐胜利, 刘少飞, 田国峰. 中国专利, CN105085914A. 2019.
42 俞建刚. 中国专利, CN105220262A, 2016.
43 Yao S, Chen M, Huang S, et al. Composites Communications, 2022, 34, 101250.
44 Chuang Y C, Bao L, Lou C W, et al. Fibers and Polymers, 2019, 20(2), 398.
45 Loureiro L, Henrique Carvalho V, Prado Bettini S H. Polymer Testing, 2016, 38, 56124.
[1] 冀运东, 张鹏伟, 崔唐茵, 曹东风, 黄端平. 芳纶纤维对铝基复合材料制动盘配套闸片摩擦磨损性能的影响[J]. 材料导报, 2025, 39(21): 24100234-7.
[2] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[3] 张峻, 解维闵, 董雄波, 杨华明. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 22010110-12.
[4] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[5] 李紫轩, 李地红, 卞立波, 冯雨琛, 张亚晴, 于海洋. 短切芳纶纤维掺量对水泥基复合材料强度和孔结构的影响[J]. 材料导报, 2021, 35(z2): 638-641.
[6] 李晓雨, 李翠玉, 苏瑞. 多巴胺掺杂碳纳米管对芳纶纤维界面性能的影响[J]. 材料导报, 2020, 34(Z2): 562-566.
[7] 江凯, 周雪松. 细菌纤维素复合材料高值化利用的研究进展[J]. 材料导报, 2020, 34(9): 9164-9169.
[8] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[9] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed