Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24120150-8    https://doi.org/10.11896/cldb.24120150
  金属与金属基复合材料 |
以高熵合金作粘结相硬质合金的研究进展
薛志鹏, 晋玺, 王雪姣, 乔珺威*
太原理工大学材料科学与工程学院,太原 030024
Research Progress on the Use of High-entropy Alloy as Binder Phase for Cemented Carbide
XUE Zhipeng, JIN Xi, WANG Xuejiao, QIAO Junwei*
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 10362KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着现代工业的不断发展,硬质合金的服役条件愈发苛刻,传统的钴、铁和镍等粘结相虽然能满足一定的性能要求,但在极端服役条件下仍存在局限性。高熵合金凭借其卓越的力学性能、高温性能以及耐腐蚀性能,为硬质合金的性能提升开辟了新的途径。本文主要对近年来以高熵合金作为粘结相制备硬质合金的研究进展进行了综述,包括介绍硬质合金的新型快速烧结方式,总结高熵合金粘结相对硬质合金在力学性能、抗氧化性和耐磨耐蚀性等方面的影响,分析高熵合金作为粘结相在硬质合金中的复杂作用,旨在强化对高熵粘结相硬质合金本征特性的理解,为高性能高熵合金粘结相的高效开发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛志鹏
晋玺
王雪姣
乔珺威
关键词:  硬质合金  粘结相  高熵合金  烧结工艺  力学性能    
Abstract: With the developing of modern industry, the service conditions of cemented carbide are increasingly harsh, although traditional bonding phases such as cobalt, iron and nickel can meet certain performance requirements, there are still limitations under extreme service conditions. High-entropy alloy provides a new way to improve the performance of cemented carbide due to its excellent mechanical properties, high-temperature properties, abrasion performance and corrosion resistance. In this paper, the research progress of preparing cemented carbide with high-entropy alloy as the bonding phase in recent years is reviewed. The new rapid sintering method of cemented carbide is mainly introduced, the mechanical properties, oxidation resistance, wear resistance and corrosion resistance of the bonded phase of high-entropy alloy and cemented carbide are summarized, and the complex role of high-entropy alloy as the bonding phase in cemented carbide is analyzed. The aim is to strengthen the understanding of the intrinsic characteristics of high-entropy bonded phase cemented carbide, and to provide a reference for the efficient development of high-performance high-entropy alloy bonded phase.
Key words:  cemented carbide    binder    high-entropy alloy    sintering process    mechanical property
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TG135  
基金资助: 山西省应用基础研究计划项目(20210302124427);国家自然科学基金青年项目(12405316)
通讯作者:  *乔珺威,博士,太原理工大学教授、博士研究生导师。目前研究方向包括:特种高熵合金结构材料,新型不锈钢(TWIP和TRIP效应),块体非晶合金的强韧化,材料中的锯齿流变行为,金属材料在极端条件下的服役行为(低温、高应变速率、离子辐照等)。qiaojunwei@gmail.com   
作者简介:  薛志鹏,太原理工大学材料科学与工程学院硕士研究生,在乔珺威教授的指导开展以高熵合金作为粘结相制备硬质合金的工艺与性能研究。
引用本文:    
薛志鹏, 晋玺, 王雪姣, 乔珺威. 以高熵合金作粘结相硬质合金的研究进展[J]. 材料导报, 2025, 39(21): 24120150-8.
XUE Zhipeng, JIN Xi, WANG Xuejiao, QIAO Junwei. Research Progress on the Use of High-entropy Alloy as Binder Phase for Cemented Carbide. Materials Reports, 2025, 39(21): 24120150-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120150  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24120150
1 Sudarshan T S. Metal Powder Report, 1998, 53(2), 32.
2 Lin B Y, Zhang Z J. China Tungsten Industry, 2006, 21(6), 1(in Chinese).
林伯颖, 张忠健. 中国钨业, 2006, 21(6), 1.
3 Niu X F, Huang Z W, Yan P W, et al. Rare Metal Materials and Engineering, 2018, 47(12), 3651.
4 Tumanov A V, Gostev Y V, Panov V S, et al. Soviet Powder Metallurgy and Metal Ceramics, 1986, 25(5), 428.
5 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
6 Chychko A, García J, Ciprés V C, et al. International Journal of Refractory Metals and Hard Materials, 2021, 103, 105763.
7 Velo L I, Gotor F J, Alcalá M D, et al. Journal of Alloys and Compounds, 2018, 746, 1.
8 Mueller-Grunz A, Alveen P, Rassbach S, et al. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105032.
9 Shi X L, Yang H, Shao G Q, et al. Journal of Central South University (Science and Technology), 2006, 37(4), 665(in Chinese).
史晓亮, 杨华, 邵刚勤, 等. 中南大学学报(自然科学版), 2006, 37(4), 665.
10 Wei C L. Preparation, microstructure and performance of diamond/tungsten based composites for fusion reactors. Ph. D. Thesis, Hefei University of Technology, China, 2020(in Chinese).
卫陈龙. 面向聚变堆应用的金刚石复合钨基材料的制备和组织性能研究. 博士学位论文, 合肥工业大学, 2020.
11 Lou J, Yi J H, Zhou C S. The Chinese Journal of Nonferrous Metals, 2012, 22(7), 1976(in Chinese).
娄静, 易健宏, 周承商. 中国有色金属学报, 2012, 22(7), 1976.
12 Chen W Y, Yin Z B, Yuan J T. International Journal of Refractory Metals and Hard Materials, 2024, 123, 106789.
13 Fu L H, Tang S W, Lu J, et al. Transactions of Materials and Heat Treatment, 2024, 45(6), 73(in Chinese).
付洛辉, 唐思文, 卢继, 等. 材料热处理学报, 2024, 45(6), 73.
14 Zhang J X, Liu K G, Zhou M L. Powder Metallurgy Technology, 2002, 20(3), 128(in Chinese).
张久兴, 刘科高, 周美玲. 粉末冶金技术, 2002, 20(3), 128.
15 Bai L, Ge C C, Shen W P. Powder Metallurgy Technology, 2007, 25(3), 217(in Chinese).
白玲, 葛昌纯, 沈卫平. 粉末冶金技术, 2007, 25(3), 217.
16 Han C L, Shen X F, Wang Y, et al. Aeronautical Manufacturing Technology, 2019, 62(22), 43(in Chinese).
韩翠柳, 沈学峰, 王衍, 等. 航空制造技术, 2019, 62(22), 43.
17 Luo K, Chen Q, Cai Y X. Materials Research and Application, 2010, 4(4), 534(in Chinese).
罗锴, 陈强, 蔡一湘. 材料研究与应用, 2010, 4(4), 534.
18 Girardini L, Zadra M, Casari F, et al. Metal Powder Report, 2008, 63(4), 18.
19 Luo W Y, Liu Y Z, Luo Y, et al. Journal of Alloys and Compounds, 2018, 754, 163.
20 Yadav S, Zhang Q F, Behera A, et al. Journal of Alloys and Compounds, 2021, 877, 160265.
21 Li J F. Preparation, microstructure and properties of cemented carbides and tungsten-based materials with special composition and structure. Ph. D. Thesis, Hefei University of Technology, China, 2019(in Chinese).
李剑峰. 特殊组成与结构硬质合金及钨基材料的制备和组织性能研究. 博士学位论文, 合肥工业大学, 2019.
22 Zhang Z D, Wang K W, Hu Y J, et al. Materials Today Communications, 2023, 37, 107137.
23 Huang H, Wang W Z, Yi G W, et al. International Journal of Refractory Metals and Hard Materials, 2024, 125, 106880.
24 Zhang G N, Yang X, Yang Z C, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27(2), 244.
25 Nakonechnyi S O, Yurkova A I, Loboda P I. Vacuum, 2024, 222, 113052.
26 Palmqvist S. Jernkontorets Annaler, 1957, 141, 300.
27 Kang K J, Yu B, Liu S H, et al. Ceramics International, 2024, 50, 52356.
28 Luo W Y, Liu Y Z, Tu C. Journal of Materials Science & Technology, 2021, 78, 192.
29 Luo W Y, Liu Y Z, Shen J J. Journal of Alloys and Compounds, 2019, 791, 540.
30 Zhang M C, Guo R P, Zhang Y. Materials Reports, 2024, 38(4), 168(in Chinese).
张明晨, 郭瑞鹏, 张勇. 材料导报, 2024, 38(4), 168.
31 Soria-Biurrun T, Lozada-Cabezas L, Navarrete-Cuadrado J, et al. International Journal of Refractory Metals and Hard Materials, 2023, 110, 105994.
32 Li J F, Cheng J G, Wei B Z, et al. Ceramics International, 2018, 45(3), 3969.
33 Zhang L, Cheng S, Schubert W D, et al. Journal of Central South University of Technology, 2004, 11(2), 119.
34 Chen R Z, Wang B, Xu D, et al. International Journal of Refractory Metals and Hard Materials, 2024, 119, 106537.
35 Yadav S, Zhang Q F, Agrawal P, et al. Materials Science & Engineering A, 2022, 857, 144059.
36 Ocak B C, Goller G. Journal of the European Ceramic Society, 2021, 41(13), 6290.
37 Liu Y, Ma S Q, Wang T Y, et al. Materials Characterization, 2024, 212, 113997.
38 He P, Wang W, Qiang F M, et al. Materials Science and Technology, 2024, 32(6), 68(in Chinese).
何攀, 王文, 强凤鸣, 等. 材料科学与工艺, 2024, 32(6), 68.
39 Ma X T, Du J, Su G S, et al. Materials Today Communications, 2022, 32, 104013.
40 Zou Q, Ren H B, Li Y G, et al. Journal of Materials Science & Technology, 2024, 190, 117.
41 Qian C, Li K, Liu Y, et al. Journal of Materials Science & Technology, 2025, 217, 245.
42 Dong D Q, Xiang X, Huang B, et al. Vacuum, 2020, 179, 109571.
43 Yuan J P, Yu Y G, Shen J. Intermetallics, 2021, 138, 107300.
44 Hui J Q, Qin J Y, Zhou Y N, et al. International Journal of Refractory Metals and Hard Materials, 2024, 122, 106712.
45 Long J Z, Yang J, Xu T, et al. International Journal of Refractory Metals and Hard Materials, 2024, 118, 106466.
46 Luo W Y, Liu Y Z, Liu X H, et al. Ceramics International, 2020, 47(6), 8498.
47 Zhu G, Liu Y, Ye J W. International Journal of Refractory Metals and Hard Materials, 2014, 44, 35.
48 Fang Y H, Chen N, Du G P, et al. Journal of Alloys and Compounds, 2020, 815, 152486.
49 Shen W Y, Zhao H J, Tian H X. Nonferrous Metals Science and Engineering, 2023, 14(1), 86(in Chinese).
沈吴毅, 赵鸿金, 田海霞. 有色金属科学与工程, 2023, 14(1), 86.
50 Santos R F, Rocha A F M, Bastos A C, et al. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105434.
51 Santos R F, Rocha A F M, Bastos A C, et al. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105090.
52 Liang F, Du J, Su G, et al. Materials Today Communications, 2023, 35, 105891.
53 Zhou P L, Xiao D H, Zhou P F, et al. Ceramics International, 2018, 44(14), 17160.
54 Xu T, Chen Q J, Zheng Z D, et al. Materials Research and Application, 2023, 17(6), 1039(in Chinese).
许桐, 陈庆军, 郑作栋, 等. 材料研究与应用, 2023, 17(6), 1039.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed