Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24110076-11    https://doi.org/10.11896/cldb.24110076
  金属与金属基复合材料 |
界面层间距对纳米结构金属Al力学性能影响的分子动力学探析
陈晶晶*, 陈莎, 姜艳青, 占慧敏, 罗泽宇
南昌理工学院机械表/界面摩擦磨损与防护润滑研究中心,南昌 330044
Molecular Dynamics Study on the Influence of Boundary Layer Spacing on Mechanical Properties of Nanostructured Al Metal
CHEN Jingjing*, CHEN Sha, JIANG Yanqing, ZHAN Huimin, LUO Zeyu
Mechanical Friction Wear and Protective Lubrication Research Center on Surface/Interface, Nanchang Institute of Technology, Nanchang 330044, China
下载:  全 文 ( PDF ) ( 60834KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 克服传统结构金属强度和塑性不可兼得的倒置关系一直是工程界和学术界面临的挑战性难题和亟需解决的关键性科学问题。本工作从界面工程考虑,基于纳米压痕法,研究了界面层间距、极端服役温度对孪晶Al和单晶Al微结构演化与压痕力学性能的影响。巧妙利用孪晶界面层间距构筑的纳米限域效应,实现纳米结构金属Al力学性能的强化,揭示纳米结构金属Al本征力学性能强韧化机理。研究发现:层间距构筑的纳米限域效应会主导客体可动位错强烈钉扎于孪晶界面上,使受限域可动位错发生交缠,显著提高受限腔域可动位错密度,是其对纳米结构金属Al主体力学性能起到强化作用的原子尺度机制。结果指出,孪晶Al力学性能强化效应会随界面层间距的减小而增加,受极端服役温度改变的影响小。限域腔道集中的高应力会驱动可动位错迁演增殖与基底结构相变转化,协同主导了纳米结构金属Al塑性变形。同时,纳米结构金属Al表面失配斑和孪晶界面受损域积累的应力集中会随界面层间距的减小而增加,也是诱驱位错形核与发射的源动力。服役温度越高,接触区剪切应变局域化越剧烈,界面接触刚度越弱,使得界面接触质量越大,导致卸载时的黏着效应越显著;而层间距的减小提高了界面接触刚度,有效减少了界面接触原子数,减小了界面接触质量。本工作可为通过调控纳米限域效应来实现结构金属材料的强韧化提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晶晶
陈莎
姜艳青
占慧敏
罗泽宇
关键词:  纳米压痕  力学性能  金属强化  分子动力学  界面工程    
Abstract: Overcoming the incompatibility between strength and plasticity in conventional structural metallic materials has long been a major challenge, and it thus remains a key scientific issue in both engineering and academic fields. From the perspective of boundary engineering, this study investigated the strong correlation between microstructural evolution and mechanical properties of twin-crystalline aluminum (Al) during plastic deformation-considering different boundary layer spacings and extreme service temperatures-based on molecular dynamics simulations. The enhancement of mechanical properties was modulated by the nanoconfinement effect induced by twin boundaries, and the underlying mechanism of this mechanical property enhancement was revealed at the atomic level. It was found that the nanoconfinement effect strongly pins mobile dislocations to twin boundaries, leading to the cross-linking and entanglement of mobile dislocations within the confined domains. This phenomenon results in a significant increase in mobile dislocation density in the confined channels, which is the fundamental reason for the remarkable improvement in the mechanical properties of nanostructured Al. Furthermore, the results demonstrate that the mechanical properties of twin-crystalline Al gradually improve with the reduction of twin boundary layer spacing, and its strengthening trend is dependent on extreme service temperatures. In addition, the high stress concentrated in confined channels directly drives the migration and proliferation of mobile dislocations, as well as the occurrence of structural phase transformations; these two processes collectively dominate the plastic deformation of nanostructured Al. Meanwhile, mismatched defect sites at the surface of nanostructured Al and within twin boundaries lead to the accumulation of high stress in damaged regions, which become the source of mobile dislocation nucleation and emission. Moreover, higher service temperatures intensify shear strain deformation around the contact zone, which weakens the boundary contact stiffness, increases boundary contact mass, and enhances the adhesion effect. In contrast, reducing the twin boundary layer spacing can improve boundary contact stiffness, effectively decrease the number of contact atoms, and mitigate boundary contact mass—thereby enhancing the toughness of nanostructured Al. This study provides an important theoretical basis and academic reference for regulating the strengthening and toughening properties of nanostructured metallic materials via the engineering design of boundary layer spacing.
Key words:  nanoindentation    mechanical property    metal strengthening    molecular dynamics    boundary engineering
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TG146  
基金资助: 国家自然科学基金(62563030);江西省教育厅科学技术研究项目(GJJ2402616);南昌理工学院科研课题(NLZK2401;NLZK2406);基于新工科建设背景的智能制造工程应用型人才培养体系研究(2022BC070);基于“竞赛+项目”的机械类学生双创能力培养体系构建(NLJG-24-21)
通讯作者:  *陈晶晶,硕士,南昌理工学院校聘副教授。目前研究方向为机械表/界面摩擦磨损与防护润滑。chenjingjingfzu@126.com   
引用本文:    
陈晶晶, 陈莎, 姜艳青, 占慧敏, 罗泽宇. 界面层间距对纳米结构金属Al力学性能影响的分子动力学探析[J]. 材料导报, 2025, 39(21): 24110076-11.
CHEN Jingjing, CHEN Sha, JIANG Yanqing, ZHAN Huimin, LUO Zeyu. Molecular Dynamics Study on the Influence of Boundary Layer Spacing on Mechanical Properties of Nanostructured Al Metal. Materials Reports, 2025, 39(21): 24110076-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110076  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24110076
1 Gu J L, Duan F H, Liu S D, et al. Chemical Reviews, 2024, 124(3), 1247.
2 Duan F, Lin Y, Li Q, et al. Journal of Materials Science & Technology, 2023, 137(12), 123.
3 Zhao S T, Zhang R P, Yu Q, et al. Science, 2021, 373(6561), 1363.
4 Zhao C, Zhou H F, Lu Q H, et al. Science, 2018, 362(58), 1925.
5 Xie Z L, Jiao J, Zhao B, et al. Mechanical Systems and Signal Processing, 2024, 208(12), 111041.
6 Xie Z L, Jiao L, Wrona S. Tribology International, 2023, 179(26), 108151.
7 Zhu T, Li J, Samanta A, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(18), 3031.
8 Zhu T, Gao H. Scripta Materialia, 2012, 66(5), 843.
9 Yuan Y, Li X, Yang W. Journal of the Mechanics Physics of Solids, 2019, 130(16), 280.
10 Liang S, Huang M, Zhao L, et al. International Journal of Plastics, 2021, 143(17), 103023.
11 Luo X M, Zhu X F, Zhang G P. Nature Communication, 2014, 5(36), 30217.
12 Zhang X, Lu S, Zhang B, et al. Acta Materialia, 2021, 202(14), 88.
13 Huang M S, Huang S, Liang S, et al. China Science Bulletin, 2019, 64(15), 1864 (in Chinese).
黄敏生, 黄嵩, 梁爽, 等. 科学通报, 2019, 64(15), 1864.
14 Doan D Q, Fang T H, Chen T H. Apple Surface Science, 2020, 524(45), 146458.
15 Thomas S L, Chen K, Han J, et al. Nature Communication, 2017, 8(19), 1764.
16 Randle V. Material Science Technology, 2013, 26(36), 253.
17 Huang Q, Zhu Q, Chen Y, et al. Nature Communication, 2021, 12(6), 6695.
18 Li X, Wei Y, Yang W, et al. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15), 16108.
19 Thomas S L, Wei C, Han J, et al. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25), 8756.
20 Liu X, Sun L, Zhu L, et al. Acta Materialia, 2018, 149(15), 397.
21 Tang Y, Wang H K, Ouyang X P et al. Nature Communications, 2024, 15(1), 3932.
22 Wang S Z, Hu, Z H, Huang Z W et al. International Journal of Plasticity, 2024, 174(9), 103908.
23 Zhao Cheng, Tao Wan, Lei Lu, et al. Acta Materialia, 2023, 256(8), 119138.
24 Fang Q J, Sansoz F. Acta Materialia, 2021, 212(15), 116925.
25 Zhang Z, Jiang Z H, Xie Y H, et al. Scripta Materialia, 2021, 207(5), 114266
26 Cui Y H, Li H T, Xiang H G, et al. Applied Surface Science, 2019, 466(1), 757.
27 Xiang H G, Li H T, Fu T. Acta Materialia, 2017, 138(1), 131.
28 Guo J, Chen J J, Wang Y Q. Ceramics International, 2020, 46(8), 12686.
29 Stukowski. Modeling and Simulation in Materials Science and Engineering, 2009, 18(1), 015012.
30 Foiles S M, Baskes M I, Daw M S. Physical Review B, 1988, 33(12), 7983.
31 Zhu Y, Ma H T, Fan H. Machine Tool and Hydraulics, 2018, 46(24), 21.
32 Morse P M. Physical Review, 1929, 34(4), 57.
33 Qian Y, Shang F L, Wan Q. Journal of Apply Physical, 2018, 24(11), 115102.
34 Sauraw G, Ben B, Chi W C, et al. Material Science Engineering A, 2015, 627(11), 249.
35 Fan X, Rui Z, Cao H, et al. Materials, 2019, 12 (6), 770.
36 Xiang H, Guo W. International Journal of Plasticity, 2022, 150(23), 103197.
37 Chen J J, Wu H, Bai S H. Material Science Semiconductor Processing, 2023, 165(29), 107651.
38 Weng S B, Chen J J, Zhou J Q, et al. Surface Technology, 2021, 50(5), 216.
39 Li S Z, Li Q Y, Carpick R W, et al. Nature, 2016, 539(24), 541.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[9] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[10] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[11] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed