Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070030-7    https://doi.org/10.11896/cldb.24070030
  金属与金属基复合材料 |
自润滑轴承及其寿命研究现状与未来展望
张俊潇1, 李振2, 任志英1,*, 马国政3,*, 赵海朝3, 王海斗3,4
1 福州大学机械工程及自动化学院,福州 350108
2 上海交通大学机械与动力工程学院,上海 200240
3 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
4 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
The Current Research Status and Future Prospects of Self-lubricating Bearings and Their Lifespan
ZHANG Junxiao1, LI Zhen2, REN Zhiying1,*, MA Guozheng3,*, ZHAO Haichao3, WANG Haidou3,4
1 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
2 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 National Key Laboratory for Remanufacturing, Army Academy of Amored Forces, Beijing 100072, China
4 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 16035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自润滑轴承因依靠零件本身的材料特性,为轴承相对运动表面提供润滑,使其可服役于油/脂润滑不便的航空、航天、核电等领域的高端装备运动部件中。但随着高端装备运动部件向极限性能发展,对自润滑轴承的高可靠长寿命提出了新的要求。因此,为研制满足高端装备运动部件需求的自润滑轴承,需明确现有低摩擦、耐磨损的自润滑材料性能提升技术,探明评价自润滑轴承性能的试验技术手段,掌握自润滑轴承的寿命预测技术。基于此,本文介绍了三种典型自润滑方式的自润滑轴承研究进展,阐述了转动类和滑动类自润滑轴承的寿命测试仪器,总结了基于统计学、物理模型和机器学习的三种自润滑轴承寿命预测方法,之后分析展望了自润滑轴承未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张俊潇
李振
任志英
马国政
赵海朝
王海斗
关键词:  自润滑轴承  摩擦磨损  寿命试验  预测方法    
Abstract: Self-lubricating bearings, relying on the intrinsic material properties of their components, provide lubrication for relative motion surfaces, allowing them to be used in high-end equipment components such as aerospace, aviation, and nuclear power, where oil/grease lubrication is impractical. However, as high-end equipment components were pursuing peak performance, new demands emerged for enhanced reliability and extended service life of self-lubricating bearings. Therefore, to develop self-lubricating bearings that met the requirements of high-end equipment components requires clarifying technologies to enhance the performance of existing low-friction, wear-resistant self-lubricating materials, exploring and evaluating test methodologies for assessing the performance of self-lubricating bearings, and mastering predictive techniques for estimating the lifespan of self-lubricating bearings. Based on this, this paper introduces the research progress of three typical self-lubricating bearing mechanisms, elucidates the life testing instruments for both rotating and sliding self-lubricating bearings, summarizes three methods for predicting the lifespan of self-lubricating bearings based on statistics, physical models, and machine learning. Finally, this paper analyzes and forecasts future research directions for self-lubricating bearings.
Key words:  self-lubricating bearing    friction and wear    life test    prediction method
发布日期:  2025-08-28
ZTFLH:  TH133.3  
基金资助: 国家自然科学基金(52205225;52122508;52105200);上海航天科技创新基金(USCAST2023-20);上海交通大学“新进青年教师启动计划”,173项目(2023-JCJQ-JJ-0958)
通讯作者:  *任志英,博士,福州大学机械工程及自动化学院教授、硕士研究生导师。主要研究领域为摩擦学表面工程、振动与噪声控制。renzyrose@126.com
马国政,博士,陆军装甲兵学院装备再制造技术国防科技重点实验室副研究员。目前主要从事装备极端工况摩擦学和表面强化改性涂层等方面的研究工作。magz0929@163.com   
作者简介:  张俊潇,福州大学机械工程学院硕士研究生,目前主要研究领域为摩擦学及表面工程。
引用本文:    
张俊潇, 李振, 任志英, 马国政, 赵海朝, 王海斗. 自润滑轴承及其寿命研究现状与未来展望[J]. 材料导报, 2025, 39(17): 24070030-7.
ZHANG Junxiao, LI Zhen, REN Zhiying, MA Guozheng, ZHAO Haichao, WANG Haidou. The Current Research Status and Future Prospects of Self-lubricating Bearings and Their Lifespan. Materials Reports, 2025, 39(17): 24070030-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070030  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070030
1 Cai X C, Ma S H, Liang M G, et al. Lubrication Engineering, 2024(2), 1(in Chinese)
蔡晓春, 马生辉, 梁明桂, 等. 润滑与密封, 2024(2), 1.
2 Li S H, Wei C, Wu Y H, et al. Bearing, DOI:10.19533/j.issn1000-3762.2023.09.001(in Chinese).
李颂华, 魏超, 吴玉厚, 等. 轴承, DOI:10.19533/j.issn1000-3762.2023.09.001.
3 Chang K K, Wang L P, Xue Q J. China Mechanical Engineering, 2020, 31(2), 206(in Chinese)
常可可, 王立平, 薛群基. 中国机械工程, 2020, 31(2), 206.
4 Liu Y F, Qin H L, Han C H, et al. Materials Reports, 2021, 35(1), 1036(in Chinese)
刘云帆, 秦红玲, 韩翠红, 等. 材料导报, 2021, 35(1), 1036.
5 Yang Y L, Zu D L, Huang S J, et al. Bearing, 2009 (1), 58(in Chinese)
杨育林, 祖大磊, 黄世军. 轴承, 2009 (1), 58.
6 Qiu M, Zhang R, Li Y C, et al. Industrial Lubrication and Tribology, 2018, 70(8), 1422.
7 Borgaonkar A, Syed I. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1), 51.
8 Zhao Y P, Zhang K F, Li Y C, et al. Lubrication Engineering, 2017, 42(7), 135(in Chinese)
赵云平, 张凯峰, 李永春, 等. 润滑与密封, 2017, 42(7), 135.
9 Shi J D, Ma G Z, Han C H, et al. Vacuum, 2021, 188, 110217.
10 Li Z, Ma G Z, Zhang Z N, et al. Diamond and Related Materials, 2024, 141, 110694.
11 Li Z, Ma G Z, Xing Z G, et al. Surface and Coatings Technology, 2022, 431, 127977.
12 Wei A B, Ma G Z, Li G L, et al. Diamond and Related Materials, 2023, 135, 109813.
13 Wei A B, Ma G Z, Li G L, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 31, 6, 513.
14 Sasaki M, Goto M. Thin Solid Films, 2022, 761, 139522.
15 Feng L T, Jin G, Cui X F, et al. Surface and Coatings Technology, 2024, 478, 130443.
16 Zhang W L, Shu X, Cheng S Y, et al. Journal of Materials Research and Technology, 2024, 28, 22.
17 Qiu M, Miao Y W, Li Y C, et al. Industrial Lubrication and Tribology, 2016, 68(3), 308.
18 Qiu M, Miao Y W, Li Y C, et al. Tribology Transactions, 2016, 59(4), 655.
19 Yuan J Y, Zhang Z Z, Yang M M, et al. Friction, 2021, 9, 1110.
20 Qi X W, Ma J, Jia Z N, et al. Wear, 2014, 318(1-2), 124.
21 Li P L, Zhang Z Z, Yang M M, et al. Tribology International, 2021, 164, 107204.
22 Yan X C, Yang X, Qi X W, et al. Tribology International, 2022, 166, 107336.
23 Wang Y L, Zhang Z Z, Jiang W, et al. Composites Part A, Applied Science and Manufacturing, 2023, 175, 107752.
24 Chen H, Zhang L, Li M, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2022, 634, 127989.
25 Xiong W T, Li X L, Chen X C, et al. ACS Applied Materials & Interfaces, 2022, 14(16), 18954.
26 Lu G F, Y X, Qi X W, et al. Tribology International, 2022, 173, 107624.
27 Wei Q, Zhou B Y, Chen S K. Hot Working Technology, 2009(14), 81(in Chinese)
魏羟, 周白杨, 陈顺宽. 热加工工艺, 2009(14), 81.
28 Liu X Y, Shi X L, Wu C H, et al. Materials Chemistry and Physics, 2017, 198, 145.
29 Huang Q, Shi X, Xue Y, et al. Wear, 2022, 504, 204416.
30 Chen Y Z, Long R S, Jin Z H, et al. Lubricants, 2023, 11(4), 154.
31 Susilowati S E, Fudholi A, Sumardiyanto D. Results in Engineering, 2022, 14, 100377.
32 Liang J, Zhang Z Q, Gao J G. Journal of Zhengzhou University(Engineering Sciernce), 2022, 43(2), 65(in Chinese)
梁杰, 张志强, 高金刚. 郑州大学学报(工学版), 2022, 43(2), 65.
33 Hampson M R, Roberts E W, Cropper M D, et al. Proceedings of the Institution of Mechanical Engineers, Part J, Journal of Engineering Tribology, 2008, 222(8), 1041.
34 Zhang A J, Han J S, Su B, et al. Materials Science and Engineering, A, 2018, 731, 36.
35 Zhang A J, Han J S, Su B, et al. Journal of Alloys and Compounds, 2017, 725, 700.
36 Xin B B, Zhang A J, Han J S, et al. Journal of Alloys and Compounds, 2021, 869, 159122.
37 Koike H, Honda T, Kida K, et al. Advanced Materials Research, 2011, 154, 1288.
38 Koike H, Kida K, Mizobe K, et al. Tribology International, 2022, 172, 107583.
39 Wang C B, Yu X, Weng L J, et al. Vacuum, 2005, 77(2), 187.
40 Werner M, Emrich S, Koch O, et al. Tribology Transactions, 2024(4), 1.
41 Tian J X, Wu Y H, Sun J, et al. Lubricants, 2022, 10(9), 213.
42 Xia Z X, Wu Y H, Ma T B, et al. Tribology International, 2022, 175, 107849.
43 Loewenthal S H, Chou R G, Hopple G B, et al. Tribology Transactions, 1994, 37(3), 505.
44 Xiang D H, Pan Q L, Luo X Y. Acta Materiae Compositae Sinica, 2003, 20(6), 125(in Chinese)
向定汉, 潘青林, 骆心怡. 复合材料学报, 2003, 20(6), 125.
45 Qiu M, Gao Z L, Wang G F, et al. Advanced Materials Research, 2011, 338, 607.
46 Qiu M, Yang Z, Lu J, et al. Tribology International, 2017, 113, 344.
47 Xue Y, Chen J, Guo S, et al. Friction, 2018, 6, 297.
48 Lu J J, Qiu M, Li Y C. Tribology International, 2016, 96, 97.
49 Zhao S, Zhang H R, Qi X W, et al. Coatings, 2023, 13(7), 1209.
50 Li Z, Zhang Z N, Yong Q S, et al. Lubricants, 2022, 10(11), 291.
51 Hao X H, Wang S Q, Huo P Q, et al. Advances in Mechanical Engineering, 2021, 13(2), 1.
52 Lu J J, Xu Y Z. Electronics Quality, 2020(11), 48(in Chinese)
卢建军, 徐永智. 电子质量, 2020(11), 48.
53 Hao X H, Wang S Q, Chen M F, et al. Shock and Vibration, 2021, 1, 8843374.
54 Li J L, Liu J, Du S M, et al. Journal of Materials Engineering and Performance, 2022, 31(7), 5918.
55 Lu J J, Qiu M, Li Y C. Journal of Mechanical Transmission, 2016, 40(10), 105(in Chinese)
卢建军, 邱明, 李迎春. 机械传动, 2016, 40(10), 105.
56 Meeks C R, Bohner J. ASLE Transactions, 1986, 29(2), 203.
57 Ma G Q, Pang Y, Huang T. New Technology & New Process, 2017(8), 74(in Chinese)
马国清, 庞煜, 黄涛. 新技术新工艺, 2017(8), 74.
58 Luo L H, Wang X M, Liu H Y, et al. International Journal on Interactive Design and Manufacturing (IJIDeM), 2019, 13(1), 23.
59 Wang Y S, Fang X, Zhang C H, et al. Eksploatacja i Niezawodność, 2016, 18(4), 528.
60 Zhang C, Wang S P, Bai G H. Acta Astronautica, 2014, 95, 30.
61 Zhang X P, Shang J Z, Chen X, et al. Journal of National University of Defense Technology, 2013, 35(6), 53(in Chinese)
张详坡, 尚建忠, 陈循, 等. 国防科技大学学报, 2013, 35(6), 53.
62 Lu J J, Qiu M, Li Y C. Journal of Mechanical Engineering, 2015, 51(11), 56(in Chinese)
卢建军, 邱明, 李迎春. 机械工程学报, 2015, 51(11), 56.
63 Jiang Z Q, Jiang J J. Science Technology and Engineering, 2018, 18(31), 17(in Chinese)
姜紫庆, 贾建军. 科学技术与工程, 2018, 18(31), 17.
64 Su B, Mao S L, Zhang G T, et al. Lubricants, 2023, 11(9), 372.
65 Chen J G, Zhang J X, Fan B L, et al. Journal of Donghua University(Natural Science), 2013, 39(4), 478(in Chinese)
陈继刚, 张进学, 范兵利, 等. 东华大学学报(自然科学版), 2013, 39(4), 478.
66 Zhang Y T, Qiu M, Zhou D W, et al. Lubrication Engineering, 2020, 45(3), 51(in Chinese)
张亚涛, 邱明, 周大威, 等. 润滑与密封, 2020, 45(3), 51.
67 Liu Z Y, He T T, Guan Z P, et al. Transactions of Materials and Heat Treatment, 2023, 44(3), 174(in Chinese)
刘泽源, 贺甜甜, 宫志鹏, 等. 材料热处理学报, 2023, 44(3), 174.
68 Phi Duong B, Kim J M. The Journal of the Acoustical Society of America, 2019, 146(4), 358.
69 Qin Y, Chen D L, Xiang S, et al. IEEE Transactions on Industrial Informatics, 2020, 17(9), 6438.
70 Sadık Ü B, Durmuş H, Meriç C. Industrial Lubrication and Tribology, 2012, 64(5), 258.
[1] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[2] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[3] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 李锐, 李瑞剑, 江洪渠, 罗圆, 赵琪, 易健宏, 刘意春. 钨基合金靶材的粉末冶金制备工艺及其磁控溅射薄膜的研究进展[J]. 材料导报, 2025, 39(17): 24060122-7.
[6] 胡少青, 岳赟, 平静艳, 邓四二, 杜三明. 不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2025, 39(14): 24070140-7.
[7] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[8] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[9] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[10] 黄先奇, 李小龙, 冯驰. 多孔介质湿物理性质预测方法综述[J]. 材料导报, 2023, 37(5): 21080186-7.
[11] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[12] 肖金坤, 李天天, 陈娟, 张超. 高速列车铜基摩擦材料的成分设计研究进展[J]. 材料导报, 2023, 37(23): 22030270-11.
[13] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[14] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[15] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed