Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070063-8    https://doi.org/10.11896/cldb.24070063
  无机非金属及其复合材料 |
电石渣-矿渣基砒砂岩复合土强度及微观机理研究
郭长旭1, 李晓丽1,*, 解卫东2, 李大虎1, 王靖丰1, 赵晓泽1
1 内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
2 内蒙古自治区水利事业发展中心,呼和浩特 010018
Study on Strength and Micro-mechanism of Carbide Slag-Ground Granulated Blast Furnace Slag-based Pisha Sandstone Composite Soil
GUO Changxu1, LI Xiaoli1,*, XIE Weidong2, LI Dahu1, WANG Jingfeng1, ZHAO Xiaoze1
1 College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2 Inner Mongolia Autonomous Region Water Resources Development Center, Hohhot 010018, China
下载:  全 文 ( PDF ) ( 13373KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对鄂尔多斯高原地区砒砂岩结构松散、胶结力差等问题,利用电石渣、矿渣作为胶凝材料对砒砂岩进行改性,以期实现在工程中的大规模应用。通过无侧限抗压、孔隙液碱度、X射线衍射、扫描电镜、热重及压汞等测试,探究电石渣-矿渣基砒砂岩复合土强度及微观机理。结果表明:当电石渣掺比为5%~15%时,电石渣可促使砒砂岩参与火山灰反应,并促进矿渣的进一步水化,生成更多的C-A-S-H凝胶,致使强度增大。但随着电石渣掺比的进一步增加,体系存在大量的碱性长石、氢氧钙石及方解石,同时凝胶结构劣化,使得复合土内部结构疏松,从而影响强度的发展。当CS/(CS+GGBS)为15%时,电石渣-矿渣基砒砂岩复合土配比最优,复合土孔隙率为27.84%,微小孔隙占比为12.57%,结构致密,力学强度最大,7 d时达到5.4 MPa,满足高速公路、一级公路等结构层的强度要求。本研究可为电石渣-矿渣基砒砂岩复合土在实际工程上的应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭长旭
李晓丽
解卫东
李大虎
王靖丰
赵晓泽
关键词:  砒砂岩  电石渣  矿渣  复合土  抗压强度  孔隙结构    
Abstract: Aiming at the problems of the loose structure and poor cementation of Pisha Sandstone in the Ordos plateau, modified Pisha Sandstone composite soil was prepared using carbide slag (CS) and ground granulated blast furnace slag (GGBS) as cementitious materials to realize large-scale application in engineering. The strength and micro-mechanism of CS-GGBS-based Pisha Sandstone composite soil was investigated through tests such as unconfined compression strength, pore fluid alkalinity, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and mercury intrusion pores. The results show that 5%—15% CS can induce the Pisha Sandstone to participate in the volcanic ash reaction and further promote the hydration of GGBS, generating more C-A-S-H gel and increasing strength. However, with the increase of the amount of CS, a large amount of alkali feldspar-phase, calcium hydroxide, and calcite existed in the system, and the gel structure deteriorated, making the internal structure of the composite soil loose, thus affecting the development of strength. There is an optimal ratio of CS-GGBS-based Pisha sandstone composite soil when the doping ratio of CS is 15%. In this instance, its porosity is 27.84%, the percentage of small pores is 12.57%, its structure is dense, its mechanical strength is the largest of 5.4 MPa at 7 d, which meets the strength requirements of the structural layer of the highway, first-class highway and so on. The research can provide the theoretical basis for the application of CS-GGBS-based Pisha sandstone composite soil in practical engineering.
Key words:  Pisha sandstone    carbide slag    ground granulated blast furnace slag    composite soil    compressive strength    pore structure
发布日期:  2025-08-28
ZTFLH:  TU525  
基金资助: 国家自然科学基金(42067017;51869022)
通讯作者:  *李晓丽,内蒙古农业大学水利与土木建筑工程学院教授、博士研究生导师。目前主要从事岩土环境与固废资源化利用等方面的研究。nd-lxl@163.com   
作者简介:  郭长旭,内蒙古农业大学水利与土木建筑工程学院硕士研究生,在李晓丽教授的指导下进行研究。目前主要研究领域为砒砂岩治理与固废资源化利用。
引用本文:    
郭长旭, 李晓丽, 解卫东, 李大虎, 王靖丰, 赵晓泽. 电石渣-矿渣基砒砂岩复合土强度及微观机理研究[J]. 材料导报, 2025, 39(17): 24070063-8.
GUO Changxu, LI Xiaoli, XIE Weidong, LI Dahu, WANG Jingfeng, ZHAO Xiaoze. Study on Strength and Micro-mechanism of Carbide Slag-Ground Granulated Blast Furnace Slag-based Pisha Sandstone Composite Soil. Materials Reports, 2025, 39(17): 24070063-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070063  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070063
1 Li H H, Zhang M S, Feng L, et al. Northwestern Geology, 2023, 56(3), 109(in Chinese).
李华华, 张茂省, 冯立, 等. 西北地质, 2023, 56(3), 109.
2 Cao S. IOP Conference Series:Earth and Environmental Science, 2018, 170, 022179.
3 Wu S Y, Li X L, Chang P, et al. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(12), 1093(in Chinese).
邬尚贇, 李晓丽, 常平, 等. 排灌机械工程学报, 2019, 37(12), 1093.
4 Li X L, Zhao X Z, Shen X D. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12), 73(in Chinese).
李晓丽, 赵晓泽, 申向东. 农业工程学报, 2021, 37(12), 73.
5 Wang C Y, Li X L, Zhao X Z, et al. Journal of Yangtze River Scientific Research Institute, 2023, 40(7), 132(in Chinese).
王重阳, 李晓丽, 赵晓泽, 等. 长江科学院院报, 2023, 40(7), 132.
6 Li D H, Li X L, Wang C Y, et al. Journal of Drainage and Irrigation Machinery Engineering, 2023, 42(8), 818(in Chinese).
李大虎, 李晓丽, 王重阳, 等. 排灌机械工程学报, 2023, 42(8), 818.
7 Bahmani H, Mostofinejad D. European Journal of Environmental and Civil Engineering, 2023, 27(15), 4497.
8 Zhao Y, Gu X, Xu X, et al. Ceramics International, 2023, 49(15), 25092.
9 Yi Y L, Qing X W, Zhuang Y, et al. Chinese Journal of Geotechnical Engineering, 2013, 35(S2), 829(in Chinese).
易耀林, 卿学文, 庄焱, 等. 岩土工程学报, 2013, 35(S2), 829.
10 Nidzam R, Kinuthia J M. Proceedings of the Institution of Civil Engineers, 2010, 163(3), 157.
11 Wang J, Lyu X, Wang L, et al. Journal of Cleaner Production, 2018, 171, 622.
12 Gao Y L, Meng H, Leng Z, et al. Journal of Civil and Environmental Engineering, 2023, 45(3), 99(in Chinese).
高英力, 孟浩, 冷政, 等. 土木与环境工程学报(中英文), 2023, 45(3), 99.
13 Li Y X, Zhang J S, Cao Y D, et al. Inorganic Chemicals Industry, 2018, 50(4), 49(in Chinese).
李彦鑫, 张金山, 曹永丹, 等. 无机盐工业, 2018, 50(4), 49.
14 Li W, Yi Y. Construction and Building Materials, 2020, 238, 117713.
15 Liu Y, Li D, Ming F. Environmental Earth Sciences, 2022, 81(9), 272.
16 Gao X, Yao X, Yang T, et al. Construction and Building Materials, 2021, 308, 125015.
17 Yi Y, Gu L, Liu S, et al. Canadian Geotechnical Journal, 2015, 52(5), 656.
18 Han W, Lv Y, Wang S, et al. Materials (Basel), 2023, 16(5), 1929.
19 Geng K Q. Experimental study on mechanical properties and durability of red pisha-sandstone cement soil. Master's Thesis, Inner Mongolia Agricultural University, China, 2021(in Chinese).
耿凯强. 红色砒砂岩水泥土力学特性及耐久性试验研究. 硕士学位论文, 内蒙古农业大学, 2021.
20 Li W, Yi Y. Journal of Materials in Civil Engineering, 2023, 35(2), 04022400.
21 Song S, Sohn D, Jennings H M, et al. Journal of Materials Science, 2000, 35, 249.
22 Zheng J, Sun X, Guo L, et al. Construction and Building Materials, 2019, 203, 111.
23 Seco A, Del-Castillo J M, Espuelas S, et al. Sustainability, 2021, 13, 3015.
24 Ye H. Materials Characterization, 2018, 140, 95.
25 Huang G, Ji Y, Li J, et al. Construction and Building Materials, 2019, 201, 90.
26 Qin L F, Qu B, Shi C J, et al. Materials Reports, 2020, 34(12), 12057(in Chinese).
覃丽芳, 曲波, 史才军, 等. 材料导报, 2020, 34(12), 12057.
27 Zhu J, Li X. Environmental Science and Pollution Research, 2022, 29(43), 65197.
28 Dong J, Li C, Liu H, et al. Construction and Building Materials, 2019, 201, 641.
29 Li C M. Reseach on the swelling inhibition mechanism and modification experiment of pisha sandstone montmorillonite. Ph. D. Thesis, Dalian University of Technology, China, 2016(in Chinese).
李长明. 砒砂岩中蒙脱石膨胀抑制机理及改性试验研究. 博士学位论文, 大连理工大学, 2016.
30 Li W, Yi Y, Puppala A J. Construction and Building Materials, 2022, 321, 126382.
31 Zuo Y, Ye G. Materials (Basel), 2018, 11(6), 1035.
32 He Y, Lu L, Struble L J, et al. Materials and Structures, 2013, 47(1-2), 311.
33 Wang J, Hu Z, Chen Y, et al. Cement and Concrete Research, 2022, 157, 106811.
34 Griffiths F J, Joshi R C. Canadian Geotechnical Journal, 1991, 28(1), 20.
[1] 李大虎, 李晓丽, 赵晓泽, 郭长旭. 活化煤矸石粉对砒砂岩水泥复合土强度影响的试验研究[J]. 材料导报, 2025, 39(9): 24010148-6.
[2] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[3] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[4] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[5] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[6] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[7] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[8] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[9] 王鹏举, 朋羽程, 丁宏, 王伟, 朋改非. 电石渣激发的无水泥超高强砂浆力学性能与微观结构特征[J]. 材料导报, 2025, 39(16): 24070056-9.
[10] 刘煌海, 季韬, 刘信所, 胡志龙, 郑巧芳, 郑小燕. 纳米硅溶胶增强碳酸钠激发矿渣砂浆力学性能及机理研究[J]. 材料导报, 2025, 39(16): 24060009-8.
[11] 阚黎黎, 戴伟, 甘元巧, 戴澜青. 碱矿渣/粉煤灰基纤维增强复合材料的抗冻性能[J]. 材料导报, 2025, 39(15): 24060001-6.
[12] 张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 24030165-13.
[13] 张永成, 曹锋, 郑明杰, 李双营, 欧阳浩. 青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构[J]. 材料导报, 2025, 39(13): 24050241-8.
[14] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[15] 刘凤利, 袁壮, 刘俊华, 田嘉静, 王亚光. 蒸压养护制度对电石渣-花岗岩石粉基加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24020026-6.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed