Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070123-5    https://doi.org/10.11896/cldb.24070123
  无机非金属及其复合材料 |
MnFe2O4纳米球的可控合成与载药性能研究
樊娜1,†, 李瑞1,†, 马香蕾1, 谭晓宇1, 刘龙1, 李雪姣1,2,*
1 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150040
2 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
Study on Controllable Synthesis and Drug Loading Performance of MnFe2O4 Nanospheres
FAN Na1,†, LI Rui1,†, MA Xianglei1, TAN Xiaoyu1, LIU Long1, LI Xuejiao1,2,*
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 16690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶剂热法,通过改变醋酸钠与反应物的比例以及反应时间,可控合成一系列PEG修饰的MnFe2O4纳米材料,并分析样品的物相结构、微观形貌、磁学性能以及紫外-可见-近红外吸收光谱。自组装的磁性PEG-MnFe2O4纳米球具有松散堆积的结构,有利于药物的担载。进一步优选反应24 h的样品,详细研究了其在不同pH条件下对化疗药物阿霉素(DOX)的负载及释放效率。在酸性肿瘤微环境响应下,样品对DOX的负载及释放率更高,分别为13.28%和43%,高于中性条件下。研究了PEG-MnFe2O4@DOX对4T1细胞的杀伤效果,结果表明PEG-MnFe2O4@DOX能有效杀死癌细胞,有望应用于纳米载药平台。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊娜
李瑞
马香蕾
谭晓宇
刘龙
李雪姣
关键词:  MnFe2O4  PEG  纳米球  阿霉素    
Abstract: In this work, a series of PEG-modified MnFe2O4 nanomaterials were controllably synthesized by the solvothermal method via changing the ratio of sodium acetate to the reactants and the reaction time. The phase structure, microscopic morphology, magnetic properties and UV-Vision-near-infrared absorption spectra of the samples were analyzed. The self-assembled magnetic PEG-MnFe2O4 nanosphere possessed loosely stacked structures that were conducive to drug loading. Furthermore, the samples with a reaction of 24 h were optimized and the loading and release efficiency of the chemotherapeutic drug doxorubicin (DOX) was investigated in detail at different pH conditions. The results showed that in response to an acidic tumor microenvironment, the samples showed the loading and release rate of DOX (13.28% and 43%, respectively), which was higher than that under neutral conditions. The killing effect of PEG-MnFe2O4@DOX on 4T1 cells was investigated, and the results showed that the MnFe2O4@DOX can effectively kill cancer cells. It is expected to be applied to nanodrug-carrying platforms.
Key words:  MnFe2O4    PEG    nanosphere    DOX
发布日期:  2025-08-28
ZTFLH:  TB34  
基金资助: 山东省自然科学基金项目生物医药联合基金(ZR2021LSW014);中国博士后科学基金面上项目(2025M774336);哈尔滨理工大学创新创业训练计划-省级项目(202210214049)
通讯作者:  *李雪姣,博士,哈尔滨理工大学材料科学与化学工程学院副教授、硕士研究生导师。目前主要从事无机纳米功能材料的可控合成及在生物、催化等领域的研究。lixuejiao@hrbust.edu.cn   
作者简介:  樊娜,哈尔滨理工大学材料科学与化学工程学院硕士研究生,在李雪姣副教授的指导下进行研究。目前主要研究领域为铁氧体纳米材料的可控合成及在肿瘤治疗中的应用。李瑞,硕士,主要从事近红外二区纳米氧化钨和锰铁氧体光诊疗剂的制备及抗肿瘤研究。†共同第一作者
引用本文:    
樊娜, 李瑞, 马香蕾, 谭晓宇, 刘龙, 李雪姣. MnFe2O4纳米球的可控合成与载药性能研究[J]. 材料导报, 2025, 39(17): 24070123-5.
FAN Na, LI Rui, MA Xianglei, TAN Xiaoyu, LIU Long, LI Xuejiao. Study on Controllable Synthesis and Drug Loading Performance of MnFe2O4 Nanospheres. Materials Reports, 2025, 39(17): 24070123-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070123  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070123
1 Zou Q, Pan H Y, Zhang X N, et al. Journal of Materials Chemistry B, 2023, 11(21), 4740.
2 Papatriantafyllou M. Nature Cancer, 2023, 12(4), 1642.
3 Tang Z M, Tian W J. Materials Reports, 2023, 37(15), 22010219 (in Chinese).
唐昭敏, 田维君. 材料导报, 2023, 37(15), 22010219.
4 Sanchez V A, Shuey M M, Dinh P C, et al. Journal of Clinical Oncology, 2023, 41(12), 2211.
5 Jiang W, Tie Z X, Yu C, et al. Biomaterials, 2023, 302, 122354.
6 Zhang J M, Wang B, Wang H, et al. Acta Biomaterialia, 2023, 166, 593.
7 Xu Y X, Liu R F, Li R, et al. ACS Nano, 2023, 17(16), 16192.
8 Mohammad S N, Choi Y S, Chung J Y, et al. Journal of Controlled Release, 2023, 354, 91.
9 Liu K K, Wang L N, Peng J, et al. Advanced Materials, 2024, 36(19), 2310735.
10 Yousefpour P, Ahn L, Tewksbury J, et al. Small, 2019, 15(12), 1804452.
11 Li S L, Saw P E, LinC H, et al. Biomaterials, 2020, 234, 119760.
12 Stater E P, Morcos G, Isaac E, et al. ACS Nano, 2023, 17(7), 6178.
13 Mdlovu N V, Juang R S, Weng M T, et al. ACS Applied Nano Materials, 2023, 6(10), 8416.
14 Siddiqui B, Rehman A U, Gul R, et al. Carbohydrate Polymers, 2024, 327, 121683.
15 Ruan D, Wang J, Ding T, et al. Small Methods, 2023, 7(11), 2300681.
16 Lv Y G, Chen X, Shen Y P. Carbohydrate Polymers, 2024, 323, 121434.
17 Wu Q Q, Yang L, Zou L, et al. Advanced Healthcare Materials, 2023, 12(24), 2300632.
18 Liu C, Liu W, Liu Y H, et al. Acta Pharmaceutica Sinica B, 2023, 13(8), 3425.
19 Bobo D, Robinson K J, Islam J, et al. Pharmaceutical Research, 2016, 33(10), 2373.
20 Wang X H, Li Z P, Ding Y D, et al. Chemical Engineering Journal, 2020, 381, 122693.
21 Kaur Y, Chandel A, Chudasama B. AIP Advances, 2023, 13(2), 025034.
22 Kalaiselvan C R, Laha S S, Somvanshi S B, et al. Coordination Chemistry Reviews, 2022, 473, 214809.
23 Pan S Y, Sun Z W, Zhao B, et al. Biomaterials, 2023, 302, 122321.
24 Li Z L, Lyu J C, Ge M, Journal of Materials Science, 2018, 53(21), 15081.
25 Ju Y, Wang Z, Ali Z, et al. Nano Research, 2022, 15(5), 4274.
26 Gao J, Si F, Wang F, et al. Solid State Sciences, 2023, 135, 107066.
27 Mohana S, Sumathi S. Journal of Cluster Science, 2024, 35(1), 129.
28 Safarkhani M, Ojaghi A, Nezhad S M, et al. Advanced Composites and Hybrid Materials, 2024, 7(1), 18.
29 Cintra E R, Hayasaki T G, Sousa-Junior A A, et al. Frontiers in Pharmacology, 2022, 13, 854430.
30 Chen Z, Sun X, Ding Z L, et al. Journal of Materials Science & Technology, 2018, 34(5), 842.
31 Zhu Y, Li Q, Wang C, et al. Chemical Reviews, 2023, 123(11), 7326.
32 Xu Y L, Wang S H, Xiong J C, et al. Advanced Healthcare Materials, 2024, 13(14), 2303839.
33 Qin S R, Zhao Q, Cheng Z G, et al. Acta Physica Sinica, 2018, 67(16), 166801.
[1] 樊娜, 杨梅, 刘德恩, 谢浩喆, 王宁, 贺豪, 李雪姣. CuFe2O4纳米球的近红外光热转换性能研究[J]. 材料导报, 2025, 39(16): 24070042-6.
[2] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[3] 高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
[4] 沈玉琳, 李婷, 叶超宇, 王小美, 吕毅, 潘在蘩, 王昭. 多重响应纳米凝胶的一步回流沉淀聚合法制备及性能表征[J]. 材料导报, 2021, 35(Z1): 513-517.
[5] 李东泽, 张明灵, 杨杰, 王茺, 杨宇. 聚苯乙烯纳米球模板和Si衬底的微结构随离子束轰击时间的演变规律[J]. 材料导报, 2020, 34(24): 24155-24159.
[6] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[7] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[8] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[9] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[10] 杨楠楠, 沈鸿烈, 蒋晔, 金磊, 李金泽, 吴文文, 余双龙, 杨艳. 二氧化硅纳米球对硼酸源扩散形成p+硅层性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 11-14.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[3] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[4] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[5] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[6] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[7] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[8] CHEN Tao, XUE Songbai, SUN Zijian, ZHAI Peizhuo, CHEN Weizhong, GUO Peipei. Short-circuit Transition Control Technology for CO2 Gas Shielded Welding: Research Status and Prospect[J]. Materials Reports, 2019, 33(9): 1431 -1442 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] ZHANG Meili, XIN Yong. Research on Molecular Morphology Evolution Based on Weld Line Formation of RHCM and CIM[J]. Materials Reports, 2019, 33(18): 3125 -3129 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed