Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070135-7    https://doi.org/10.11896/cldb.24070135
  无机非金属及其复合材料 |
氯碱电解与碱性水电解制氢关键材料的对比与展望
徐宇翔1,2, 张冰2, 董迁2, 朱其轩1, 唐宏2, 陈松3, 徐桂银1,*
1 东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海 201620
2 江苏安凯特科技股份有限公司,江苏 无锡 214400
3 盐城工学院化学化工学院,江苏 盐城 224051
Comparative Analysis and Prospect of Key Materials for Hydrogen Production by Chlor-alkali Electrolysis and Alkaline Water Electrolysis
XU Yuxiang1,2, ZHANG Bing2, DONG Qian2, ZHU Qixuan1, TANG Hong2, CHEN Song3, XU Guiyin1,*
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 Jiangsu Ancan Technology Co., Ltd., Wuxi 214400, Jiangsu, China
3 School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China
下载:  全 文 ( PDF ) ( 13642KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能作为绿色清洁能源可以通过电解技术有效获取,氯碱为电解技术工业化生产的典型行业,本文通过研究氯碱工业副产氢和水电解制氢技术,将两种技术发展历程及原理进行对比,总结出技术路线较为成熟的碱性水电解制氢为目前规模化工业生产的最快方法。同时论述电极材料及催化材料和膜材料分别在氯碱电解槽和碱性水电解制氢电解槽中的发展、工业化应用概况和最新研究,通过对比得到碱性水电解制氢与氯碱电解可以相互借鉴的研发思路,系统对比两种技术作为关键性材料的电极和膜的工业化应用概况及发展方向,为实现降低能耗、提高电解槽性能的目的提供理论依据,进一步推动碱性水电解制氢技术的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐宇翔
张冰
董迁
朱其轩
唐宏
陈松
徐桂银
关键词:  电解技术  氯碱工业副产氢  碱性水电解制氢    
Abstract: Hydrogen energy as a green and clean energy can be effectively obtained by electrolysis technology, chlor-alkali is a typical industry in industrialized production of electrolytic technology. The development course and principles of hydrogen production by-product from chlor-alkali industry and alkaline water electrolysis are compared. It is considered that the technical route of alkaline water electrolysis hydrogen production is mature, which is the fastest method for large-scale industrial production at present. At the same time, the development, survey of industrial application and latest research of electrode materials, catalysts and membrane materials in chlor-alkali electrolyzer and alkaline water hydrogen electrolyzer respectively were discussed. Through comparison, the research and development ideas of hydrogen production by alkaline water electrolysis and chlor-alkali electrolysis can learn from each other are obtained, the industrial application and development direction of electrodes and membranes with these two technologies as key materials are compared systematically, which provides basis for reducing energy consumption and improving the performance of electrolyzers, and further promotes the development of hydrogen production by alkaline water electrolysis technology.
Key words:  electrolytic technology    chlor-alkali by-product hydrogen    alkaline water product hydrogen
发布日期:  2025-08-28
ZTFLH:  TQ151  
  TQ116  
通讯作者:  *徐桂银,东华大学材料科学与工程学院、纤维材料改性国家重点实验室研究员、博士研究生导师,麻省理工学院博士后,入选2023全球前2%顶尖科学家。主要研究方向为功能纤维膜在绿色能源与环境修复中的应用。xuguiyin@dhu.edu.cn   
作者简介:  徐宇翔,东华大学材料科学与工程学院博士研究生,目前主要研究领域为电解水制氢催化剂材料。
引用本文:    
徐宇翔, 张冰, 董迁, 朱其轩, 唐宏, 陈松, 徐桂银. 氯碱电解与碱性水电解制氢关键材料的对比与展望[J]. 材料导报, 2025, 39(17): 24070135-7.
XU Yuxiang, ZHANG Bing, DONG Qian, ZHU Qixuan, TANG Hong, CHEN Song, XU Guiyin. Comparative Analysis and Prospect of Key Materials for Hydrogen Production by Chlor-alkali Electrolysis and Alkaline Water Electrolysis. Materials Reports, 2025, 39(17): 24070135-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070135  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070135
1 Chen Q, Tan Z C. China Industry & Information Technology, 2024(5), 20 (in Chinese).
陈群, 谭忠超. 中国工业和信息化, 2024(5), 20.
2 Liu Y D, Guo H X, Ouyang X P. Strategic Study of Chinese Academy of Engineering, 2021, 23(4), 162 (in Chinese).
刘应都, 郭红霞, 欧阳晓平. 中国工程科学, 2021, 23(4), 162.
3 Shao Z G, Yi B L. Bulletin of Chinese Academy of Sciences, 2019, 34(4), 469 (in Chinese).
邵志刚, 衣宝廉. 中国科学院院刊, 2019, 34(4), 469.
4 Zhang J J, Liu W F, Sun F, et al. Sustainable Development, 2023, 13(2), 572 (in Chinese).
张晶晶, 刘未杰, 孙芃, 等. 可持续发展, 2023, 13(2), 572.
5 Liu S M, Shi L. China Coal, 2021, 47(6), 53 (in Chinese).
刘思明, 石乐. 中国煤炭, 2021, 47(6), 53.
6 Zheng J B. China Chlor-Alkali, 2023, 1(1), 1 (in Chinese).
郑结斌. 中国氯碱, 2023, 1(1), 1.
7 Wu Z Y, Zhang X. Guangdong Chemical Industry, 2024, 1(1), 51 (in Chinese).
吴振宇, 张轩. 广东化工, 2024, 1(1), 51.
8 Wan L, Xu Z A, Wang P X, et al. Chemical Industry and Engineering Progress, 2022, 41(3), 1556 (in Chinese).
万磊, 徐子昂, 王培灿, 等. 化工进展, 2022, 41(3), 1556.
9 Dubouis N, Aymé-Perrot D, Degoulange D, et al. Joule, 2024, 8, 883.
10 David M, Ocampo-Martínez C, Sánchez-Peña R, et al. Journal of Energy Storage, 2019, 23, 392.
11 Liu R, Xu Z, Li F, et al. Chemical Society Reviews, 2023, 16, 5345.
12 Xu Y, Zhao Y, Yuan Z, et al. Journal of Materials Chemistry A, 2024, 12, 18751.
13 Li D, Motz A, Bae C, et al. Energy & Environmental Science, 2021, 14, 3393.
14 Xu Q, Zhang L, Zhang J, et al. Journal of Energy Chemistry, 2022, 4, 100087.
15 Bi L, Boulfrad S, Traversa E. Chemical Society Reviews, 2014, 43, 8255.
16 Lv Z, Chen G, Wei K, et al. International Journal of Hydrogen Energy, 2024, 55, 386.
17 Li K, Fan Q, Chuai H, et al. Transactions of Tianjin University, 2021, 27, 202.
18 Xia Y M. Tianjin Chemical Industry, 2019, 33(3), 62 (in Chinese).
夏优美. 天津化工, 2019, 33(3), 62.
19 Zhu J, Zhao W, Xu Y X. China Chlor-Alkali, 2022(6), 5 (in Chinese).
朱俊, 赵伟, 徐宇翔, 等. 中国氯碱, 2022(6), 5.
20 朱立人, 杨国华, 吴彬, 等. 中国专利, CN216074047U, 2022.
21 杨国华, 唐宏, 朱立人, 等. 中国专利, CN216663251U, 2022.
22 杨国华, 朱俊, 唐建军, 等. 中国专利, CN110965070B, 2021.
23 杨国华, 徐文新, 唐宏, 等. 中国专利, CN207699683U, 2018.
24 徐文新. 中国专利, CN102703924B, 2012.
25 吴彬, 杨国华, 朱立人, 等. 中国专利, CN216074050U, 2022.
26 徐文新, 唐宏, 杨国华, 等. 中国专利, CN113584510B, 2021.
27 Naimi Y, Antar A. Advances In Hydrogen Generation Technologies, DOI:10.5772/intechopen.76814.
28 Sapountzi F M, Gracia J M, Fredriksson H, et al. Progress in Energy and Combustion Science, 2017, 58, 1.
29 杨国华, 孙鑫豪, 朱俊, 等. 中国专利, CN212375406U, 2021.
30 吴彬, 杨国华, 朱立人, 等. 中国专利, CN217104089U, 2022.
31 杨国华, 黄建刚, 马培岚, 等. 中国专利, CN111058055B, 2021.
32 Beer H. Journal of the Electrochemical Society, 1980, 127, 303C.
33 Hu Y Y. Materials Protection, 2020, 53(7), 46 (in Chinese).
胡媛媛. 材料保护, 2020, 53(7), 46.
34 Hu Y Y. Guangdong Chemical Industry, 2018, 10(53), 112 (in Chinese).
胡媛媛. 广东化工, 2018, 10(53), 112.
35 徐宇翔, 张冰, 唐宏, 等. 中国专利, CN116024600B, 2023.
36 徐坚, 唐宏, 陈晓丽. 中国专利, CN108048865B, 2020.
37 胡媛媛, 陈晓丽. 中国专利, CN108048862B, 2020.
38 徐坚. 中国专利, CN104532291B, 2015.
39 徐坚. 中国专利, CN204080123U, 2015.
40 徐文新. 中国专利, CN102703925B, 2012.
41 Wang L, Sun L, Cao Y, et al. Composites and Advanced Materials, 2020, 29, 1.
42 Yasumura J. Nature, 1954, 173, 80.
43 Balas W, Dempsey J, Rexer E. Journal of Applied Physics, 1955, 26, 1163.
44 Li M Y. Guangdong Chemical Industry, 2015, 42(7), 114 (in Chinese).
李茂营. 广东化工, 2015, 42(7), 114.
45 胡媛媛, 陈晓丽. 中国专利, CN108070877B, 2018.
46 Li S J, Ju H, Cai T X, et al. Chlor-Alkali Industry, 2010, 46(11), 13 (in Chinese).
李淑娟, 鞠鹤, 蔡天晓, 等. 氯碱工业, 2010, 46 (11), 13.
47 Reier T, Oezaslan M, Strasser P. Journal of the American Chemical Society, 2012, 2(8), 1765.
48 Li L, Wang P, Shao Q, et al. Advanced Materials, 2021, 50, 1.
49 Rinawati M, Wang Y, Chen K, et al. Chemical Engineering Journal, 2021, 423, 130204.
50 Di L, Pacchioni G, Shao H, et al. The Journal of Physical Chemistry C, 2023, 127, 10127.
51 Lee J, Lee S, Kim Y, et al. Vacuum, 2024, 220, 112843.
52 Wang Z, Xiao B, Li Z, et al. Journal of Energy Chemistry, 2021, 54, 510.
53 Chi B, Li J, Han Y, et al. Materials Letters, 2004, 58(9), 1415.
54 徐宇翔, 张冰, 唐宏, 等. 中国专利, CN219689888U, 2023.
55 Han Q, Wei X J, Liu K R. The Chinese Journal of Nonferrous Metals, 2001, 1(z1), 158 (in Chinese).
韩庆, 魏绪钧, 刘奎仁. 中国有色金属学报, 2001, 1(z1), 158.
56 Zuo Y, Bellani S, Saleh G, et al. Journal of the American Chemical Society, 2023, 145, 21419.
57 Yang J, Yang S, An L, et al. American Chemical Society Catalysis, 2024, 14, 3466.
58 Zhang J, Dang J, Zhu X, et al. Applied Catalysis B:Environment and Energy, 2023, 325, 122296.
59 Anantharaj S, Karthick K, Venkatesh M, et al. Nano Energy, 2017, 39, 30.
60 Feng Y, Li Z, Li S, et al. Journal of Energy Chemistry, 2022, 66, 493.
61 Fang D, Jiang L S, Wu Z D, et al. Chlor alkali technology, Chemical Industry Press, China, 1990, pp. 69 (in Chinese).
方度, 蒋兰荪, 吴正德, 等. 氯碱工艺学, 化学工业出版. 1990, pp. 69.
62 Song H, Yang H, Yu X, et al. Ionics, 2024, 30, 1223.
63 Yan X, Yang X, Su X, et al. Journal of Power Sources, 2020, 480, 228805.
64 Hu X, Liu M, Huang Y, et al. Journal of Membrane Science, 2022, 663, 121005.
65 Ito H, Manabe A. Chlor-alkali Electrolysis, 2022, 281.
66 徐文新, 马培岚, 朱俊, 等. 中国专利, CN111826680B, 2020.
67 高兴旺, 唐宏, 徐坚, 等. 中国专利, CN106739035B, 2019.
68 Hu X, Liu M, Huang Y, et al. Journal of Membrane Science, 2022, 663, 121005.
69 Shen Y J, Zhou Z F, Lv D F, et al. Chemical Engineer, 2009, 23(8), 4 (in Chinese).
沈英静, 周振芳, 吕东方, 等. 化学工程师, 2009, 23(8), 4.
70 Zhu Q, Zhang T, Zhu X, et al. Energy Material, 2024, 4, 400016.
71 Lee J, Lee J, Lee C, et al. Chemical Engineering Journal, 2022, 428, 131149.
72 Kumar S, Himabindu V. Materials Science for Energy Technologies, 2019, 2, 442.
73 Park E, Maurya S, Hibbs M, et al. Macromolecules, 2019, 52, 5419.
74 Faid A, Sunde S. Energy Technology, 2022, 10, 2200506.
75 Qian S T, He Y, Weng W B, et al. Advances in New and Renewable Energy, 2024, 12(1), 1 (in Chinese).
钱圣涛, 何勇, 翁武斌, 等. 新能源进展, 2024, 12(1), 1.
[1] 曲九灏, 雷宽, 马棋盛, 张艺馨, 刘贵群, 张小丽. DD90镍基单晶高温合金的电化学溶解行为研究[J]. 材料导报, 2025, 39(17): 24060120-7.
[2] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[3] 杨瑞锋, 贾波, 郭敏, 武晨航, 李金岳, 郝小军, 冯庆. Ti基Ru-Ir-Ti电极在稀氯化钠溶液中的电解失效行为[J]. 材料导报, 2024, 38(13): 22110104-5.
[4] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[5] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[4] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[5] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[6] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[7] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[8] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
[9] TIAN Hanwei, WANG Aiqin, XIE Jingpei, CHANG Qinghua, LIU Shuaiyang. Optimization of Cast-Rolling Process of Copper Aluminum Composite Plate and Experimental Analysis[J]. Materials Reports, 2019, 33(10): 1706 -1711 .
[10] YIN Huawei, LI Mingwei, ZHOU Chuan, HU Zhitao. Effects of Motion Modes on the Properties of ADP Crystals During Growth[J]. Materials Reports, 2019, 33(16): 2660 -2664 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed