Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24070042-6    https://doi.org/10.11896/cldb.24070042
  无机非金属及其复合材料 |
CuFe2O4纳米球的近红外光热转换性能研究
樊娜1,†, 杨梅1,†, 刘德恩1, 谢浩喆1, 王宁1, 贺豪1, 李雪姣1,2,*
1 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150040
2 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
Near-infrared-light-responsive Photothermal Conversion Performance of CuFe2O4 Nanospheres
FAN Na1,†, YANG Mei1,†, LIU De’en1, XIE Haozhe1, WANG Ning1, HE Hao1, LI Xuejiao1,2,*
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 20430KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光热治疗作为一种新的癌症治疗方法,通过光热转换剂将能量转化为热能,具有低毒性、非侵入性和高精准性等优点。与传统的近红外一区光热疗法相比,近红外二区诱导的光热疗法由于在生物组织中具有更低的能量耗散、更深的组织穿透和更高的空间分辨率而受到广泛关注,其关键在于开发一种合成方法简单、转换效率高的光热转换剂。本工作以六水氯化铁和二水氯化铜为原料,乙二醇作为溶剂,利用一步溶剂热法合成CuFe2O4纳米球,分析了样品的物相结构、显微形貌、拉曼光谱、磁学性能和吸收光谱等。在近红外一区/二区生物安全功率范围内详细探究了样品的光热升温和成像性能、光热转换效率和稳定性,考察对肿瘤细胞4T1的体外杀伤效果。结果表明,CuFe2O4纳米球具有良好的光热转换性能,在近红外光响应下的癌症可视化光热治疗领域具有重要的潜在应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊娜
杨梅
刘德恩
谢浩喆
王宁
贺豪
李雪姣
关键词:  近红外光  CuFe2O4  纳米球  光热转换    
Abstract: Photothermal therapy, a novel approach in cancer treatment, utilizes photothermal conversion agents to convert energy into thermal energy. This method offers advantages such as low toxicity, non-invasiveness, and high precision. In contrast to conventional near-infrared-Ⅰ-responsive photothermal therapy, the near-infrared-Ⅱ-induced photothermal therapy has provoked significant attention due to its lower energy dissipation in biological tissues, deeper tissue penetration, and higher spatial resolution. The key topic of the near-infrared-Ⅱ-induced photothermal therapy is to develop photothermal conversion agents with facile synthesis processes and high photothermal conversion efficiencies. The present work fabricated CuFe2O4 nanospheres via one-step solvothermal method using hexahydrate ferric chloride and dihydrate copper chloride as raw materials and ethylene glycol as the solvent, and conducted characterizations such as XRD, SEM, Raman spectroscopy, vibrating sample magnetometry, and absorption spectroscopy of the prepared samples. It furthermore investigated the photothermal heating and imaging performance, conversion efficiency, and stability of the CuFe2O4 nanospheres under biosafe power of both near-infrared-Ⅰ and -Ⅱ irradiation, and examined their in vitro killing effect to 4T1 tumor cells. It can be concluded that the CuFe2O4 nanospheres exhibit excellent photothermal conversion performance under near-infrared irradiation, and significant applicative potential in the field of near-infrared-responsive photothermal cancer treatment.
Key words:  near-infrared light    CuFe2O4    nanosphere    photothermal conversion
出版日期:  2025-08-25      发布日期:  2025-08-15
ZTFLH:  TB34  
基金资助: 山东省自然科学基金项目生物医药联合基金(ZR2021LSW014);中国博士后科学基金(2025M774336);哈尔滨理工大学创新创业训练计划-省级项目(202310214105)
通讯作者:  李雪姣,博士,哈尔滨理工大学材料科学与化学工程学院副教授、硕士研究生导师。目前主要从事无机纳米功能材料的可控合成及在生物、催化等领域的研究工作。lixuejiao@hrbust.edu.cn   
作者简介:  樊娜,现为哈尔滨理工大学材料科学与化学工程学院硕士研究生,主要研究领域为铁氧体纳米材料的可控合成及在肿瘤治疗中的应用。杨梅,现为哈尔滨理工大学材料科学与化学工程学院本科生,黑龙江省大学生创新创业训练项目负责人,在李雪姣副教授的指导下对“近红外二区光响应下的Cu/CuFe2O4光热性能增强”课题展开研究。†共同第一作者
引用本文:    
樊娜, 杨梅, 刘德恩, 谢浩喆, 王宁, 贺豪, 李雪姣. CuFe2O4纳米球的近红外光热转换性能研究[J]. 材料导报, 2025, 39(16): 24070042-6.
FAN Na, YANG Mei, LIU De’en, XIE Haozhe, WANG Ning, HE Hao, LI Xuejiao. Near-infrared-light-responsive Photothermal Conversion Performance of CuFe2O4 Nanospheres. Materials Reports, 2025, 39(16): 24070042-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070042  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24070042
1 Xue Y E, Che J Y, Ji X M, et al. Chemical Society Reviews, 2022, 51(5), 1766.
2 Huang D Y, Xie D M. Materials Reports, 2023, 37(20), 22040099 (in Chinese).
黄道远, 谢德明. 材料导报, 2023, 37(20), 22040099.
3 Huang X Y, Lu Y, Guo M X, et al. Theranostics, 2021, 11(15), 7546.
4 Wang J, Sheng Z J, Guo J R, et al. Coordination Chemistry Reviews, 2023, 486, 215137.
5 Sun H T, Zhang Q, Li J C, et al. Nano Today, 2021, 37, 101073.
6 Yan X, Li K, Xie T Q, et al. Angewandte Chemie-international Edition, 2024, 63(13), e202318539.
7 Xie H H, Yang M, He X L, et al. Advanced Science, 2024, 11(7), 2306494.
8 Lagos K J, Buzza H H, Bagnato V S, et al. International Journal of Molecular Sciences, 2022, 23(1), 28.
9 Cheng Y R, Lu H T, Yang F, et al. Nanoscale, 2021, 13(5), 3049.
10 Feng S P, Lu J Y, Wang K L, et al. Chemical Engineering Journal, 2022, 435, 134886.
11 Chang M Y, Hou Z Y, Wang M, et al. Angewandte Chemie International Edition, 2021, 60(23), 12971.
12 Wang M, Chang M G, Li C X, et al. Advanced Materials, 2022, 34(4), 2106010.
13 Zhang J, Li J S, Zhang Q X, et al. Applied Surface Science, 2023, 624, 156848.
14 Zhen X, Pu K Y, Jiang X Q. Small, 2021, 17(6), 2004723.
15 Liu Q, Dang P P, Zhang G D, et al. CrystEngComm, 2022, 24(31), 5622.
16 Li X J, Xu Z L, Liu D Y, et al. Ceramics International, 2024, 50(6), 9132.
17 Chu X, Zhang L, Li Y, et al. Small, 2023, 19(7), 2205414.
18 Bobo D, Robinson K J, Islam J, et al. Pharmaceutical Research, 2016, 33(10), 2373.
19 Wang X H, Li Z P, Ding Y D, et al. Chemical Engineering Journal, 2020, 381, 122693.
20 Arias L S, Pessan J P, Miranda Vieira A P, et al. Antibiotics-Basel, 2018, 7(2), 46.
21 Meidanchi A, Ansari H. Journal of Cluster Science, 2021, 32(3), 657.
22 Zhang Z H, Xue H, Xiong Y, et al. Theranostics, 2024, 14(2), 547.
23 Akhavan O, Meidanchi A, Ghaderi E, et al. Journal of Materials Che-mistry B, 2014, 2(21), 3306.
24 Wang K, Yang P, Guo R R, et al. Chinese Chemical Letters, 2019, 30(12), 2013.
25 Li S, Ding H, Chang J H, et al. Journal of Colloid and Interface Science, 2022, 623, 787.
26 Chen N P, Li Y H, Li H H, et al. Colloids and Surfaces B:Biointerfaces, 2023, 229, 113445.
27 Bashkatov A N, Genina E A, Kochubey V I, et al. Journal of Physics D-Applied Physics, 2005, 38(15), 2543.
28 Li X J, Li B, Li R, et al. Journal of Alloys and Compounds, 2023, 936, 168161.
29 Dilliard S A, Siegwart D J. Nature Reviews Materials, 2023, 8(4), 282.
30 Qin H, He Y Z, Xu P, et al. Green Energy & Environment, 2024, 9(4), 732.
31 Wang A, Yang H W, Song T, et al. Nanoscale, 2017, 9(41), 15760.
32 Shan L, Fang Z, Ding G, et al. Journal of Colloid and Interface Science, 2024, 653, 94.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 豆裕, 范同祥. 高温太阳光谱选择性吸收涂层的研究进展[J]. 材料导报, 2025, 39(14): 24060008-11.
[3] 郭适, 郭启麟, 张瀛博, 巴泓雨, 陆相林, 刘会娥, 陈爽. 石墨烯/碳纳米管复合多孔材料用于光热辅助高黏重油吸附[J]. 材料导报, 2025, 39(13): 24050053-6.
[4] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[5] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[6] 左夏华, 宋立健, 关昌峰, 阎华, 杨卫民, 安瑛. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 22050317-9.
[7] 王信刚, 雷为愉, 朱街禄, 张晨阳. 可逆热致变色相变微胶囊的热响应及光热转换性能[J]. 材料导报, 2023, 37(20): 22030234-6.
[8] 潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
[9] 刘小钰, 汪路, 张智勇, 刘传磊, 方雅涵, 王冉, 张友丽, 王灿, 苏丽芬, 杨斌, 周建华, 苗蕾. 界面太阳能蒸发的应用研究进展[J]. 材料导报, 2022, 36(19): 20110251-16.
[10] 杜咪咪, 薛朝华, 郭小静, 贾顺田. 光致发热材料的超疏水化改性及其对光热转换性能的影响[J]. 材料导报, 2022, 36(15): 21010272-5.
[11] 苏丽芬, 常展鹏, 宁玉盈, 汪路, 方雅涵, 方炳虎, 柯玉超, 杨斌, 夏茹, 钱家盛, 苗蕾. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
[12] 李东泽, 张明灵, 杨杰, 王茺, 杨宇. 聚苯乙烯纳米球模板和Si衬底的微结构随离子束轰击时间的演变规律[J]. 材料导报, 2020, 34(24): 24155-24159.
[13] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[14] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[15] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[6] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[7] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[8] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[9] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
[10] SHANG Fuqiang, HUANG Liqing, LI Gang, ZHANG Yu, CAI Yakun, WANG Huimin, DONG Weili, ZHANG Lei, LIU You. Preparation of Superhydrophilic Anodized Aluminum Oxide Membrane and Superhydrophobic Anodized Aluminum Oxide Membrane with Different Adhesion[J]. Materials Reports, 2020, 34(10): 10003 -10007 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed