Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24070056-9    https://doi.org/10.11896/cldb.24070056
  无机非金属及其复合材料 |
电石渣激发的无水泥超高强砂浆力学性能与微观结构特征
王鹏举1, 朋羽程2, 丁宏3,4, 王伟4, 朋改非1,*
1 北京交通大学土木建筑工程学院,北京 100044
2 北京工业大学城市建设学部,北京 100124
3 北京建工新型建材有限责任公司,北京 100015
4 北京建工恒均工程检测有限公司,北京 102615
Mechanical Properties and Microstructure Characteristics of Cementless Ultra-high Strength Mortar Activated by Calcium Carbide Residue
WANG Pengju1, PENG Yucheng2, DING Hong3,4, WANG Wei4, PENG Gaifei1,*
1 Faculty of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2 Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100024, China
3 Advanced Construction Materials Limited Liability Company, Beijing Construction Engineering Group, Beijing 100015, China
4 Beijing Construction Engineering Hengjun Engineering Testing Co., Ltd., Beijing 102615, China
下载:  全 文 ( PDF ) ( 30633KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高无水泥超高性能混凝土的经济效益和环境效益,采用固废电石渣作为激发剂,矿渣、硅灰或两者混合作为前驱体制备一系列无水泥砂浆。研究了前驱体和养护制度对其抗压强度、水化产物和微观结构的影响。结果表明:相较于电石渣激发硅灰砂浆,电石渣激发矿渣砂浆表现出更好的工作性和抗压强度。掺入硅灰后的电石渣激发矿渣-硅灰砂浆在组合养护后抗压强度达到132.2 MPa。矿渣水解和电石渣提供的氢氧化钙与硅灰提供的二氧化硅在热养护下发生显著的火山灰反应,生成大量C-(A)-S-H凝胶以及少量托勃莫来石和硬硅钙石晶体,降低砂浆总孔隙率,促使无水泥砂浆获得超高抗压强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏举
朋羽程
丁宏
王伟
朋改非
关键词:  超高性能混凝土  无水泥超高强砂浆  电石渣  热养护制度    
Abstract: In order to improve the economic and environmental benefits of cementless ultra-high performance concrete (UHPC), ground granulated blast furnace slag (GGBFS), silica fume (SF) or both were used as precursors, activated by calcium carbide residue to prepare a series of cementless mortars. The effect of precursors and curing regimes on compressive strength, hydration products and microstructure of cementless mortars was investigated. Results show that CCR activated GGBFS mortars obtained higher fluidity and compressive strength than CCR activated SF mortars. With addition of SF, the compressive strength of CCR activated GGBFS-SF mortars under combined curing reached 132.2 MPa. The pozzolanic reaction between Ca(OH)2 provided by GGBFS hydration and CCR and SiO2 provided by SF in the matrix was significantly acce-lerated by thermal curing, generated a large amounts of C-(A)-S-H gel and a small amounts tobermorite crystals and xonotlite crystals, reduced the porosity and helped the cementless mortar obtained ultra-high compressive strength.
Key words:  ultra-high performance concrete (UHPC)    cementless ultra-high strength mortar    calcium carbide residue (CCR)    thermal curing regimes
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU528.31  
基金资助: 国家自然科学基金(51878032);北京市自然科学基金(8212013;8172036)
通讯作者:  朋改非,博士,北京交通大学土木建筑工程学院教授、博士研究生导师。目前主要从事超高性能混凝土、高性能混凝土、再生混凝土等方面的研究。gfpeng@bjtu.edu.cn   
作者简介:  王鹏举,北京交通大学土木建筑工程学院博士研究生,在朋改非教授的指导下进行研究。目前主要研究领域为绿色低碳超高性能混凝土。
引用本文:    
王鹏举, 朋羽程, 丁宏, 王伟, 朋改非. 电石渣激发的无水泥超高强砂浆力学性能与微观结构特征[J]. 材料导报, 2025, 39(16): 24070056-9.
WANG Pengju, PENG Yucheng, DING Hong, WANG Wei, PENG Gaifei. Mechanical Properties and Microstructure Characteristics of Cementless Ultra-high Strength Mortar Activated by Calcium Carbide Residue. Materials Reports, 2025, 39(16): 24070056-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070056  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24070056
1 Luan C Q, Wu Z M, Han Z P, et al. Journal of Cleaner Production, 2023, 415, 1.
2 Teng L, Valipour M, Khayat K H. Cement and Concrete Composites, 2021, 118, 1.
3 Aboukifa M, Moustafa M A. Engineering Structures, 2022, 255, 1.
4 Li J H, Wang X P, Chen D D, et al. Construction and Building Materials, 2021, 309, 1.
5 Yang J, Peng G F. Key Engineering Materials, 2015, 629, 112.
6 Lee N K, Koh K T, Kim M O, et al. Cement and Concrete Research, 2018, 104, 68.
7 Yang R, Yu R, Shui Z H, et al. Journal of Cleaner Production, 2019, 240, 1.
8 Shi Y, Long G C, Zeng X H, et al. Construction and Building Materials, 2021, 303, 1.
9 Ambily P S, Ravisankar K, Umarani C, et al. Magazine of Concrete Research, 2014, 66, 82.
10 Wang F, Sun X K, Tao Z, et al. Journal of Building Engineering, 2022, 62, 1.
11 Fan M X, Chen F X, Zhang X Y, et al. Construction and Building Materials, 2023, 394, 1.
12 Huang L, Liu J C, Cai R J, et al. Cement and Concrete Composites, 2021, 121, 1.
13 Kathirvel P, Sreekumaran S. Journal of Building Engineering, 2021, 39, 1.
14 Liu Y W, Zhang Z H, Shi C J, et al. Cement and Concrete Composites, 2020, 112, 1.
15 Zhang R, He H Y, Song Y H, et al. Construction and Building Materials, 2023, 393, 1.
16 Tahwia A M, Heniegal A M, Abdellatief M, et al. Case Studies in Construction Materials, 2022, 17, 1.
17 Liang G W, Yao W, Wei Y Q. Science of the Total Environment, 2023, 895, 1.
18 Cai R J, Tian Z S, Ye H L. Cement and Concrete Composites, 2022, 134, 1.
19 Matsuda T, Noguchi T, Kanematsu M, et al. In:FIB 2018-Proceedings for the 2018 fib congress:Better, Smarter, Stronger. Melbourne, 2019, pp. 973.
20 Matsuda T, Mine R, Geddes D A, et al. In:Proceedings for the 6th fib International Congress, 2022-Concrete Innovation for Sustainability, 2022, pp. 763.
21 Sasaki W, Matsuda T, Mine R, et al. In:International fib Symposium on concrete innovations in materials, design and structures. Kraków, 2019, pp. 204.
22 Matsuda T, Ryuichiro M, Takafumi N. Lecture Notes in Civil Engineering, 2023, 349 LNCE, 397.
23 Dahal M, Oinam Y, Vashistha P, et al. Journal of Building Engineering, 2023, 75, 1.
24 Oinam Y, Dahal M, Mesfin M, et al. Journal of Building Engineering, 2024, 90, 1.
25 Kang S H, Kang H, Lee N, et al. Journal of Building Engineering, 2022, 45, 1.
26 Oinam Y, Moges K A, Vashistha P, et al. Construction and Building Materials, 2024, 426, 1.
27 Yoo D, Banthia N, You I, et al. Cement and Concrete Composites, 2024, 148, 1.
28 Gong X Z, Zhang T, Zhang J Q, et al. Renewable and Sustainable Energy Reviews, 2022, 159, 1.
29 Bilondi M P, Toufigh M M, Toufigh V. Construction and Building Materials, 2018, 183, 417.
30 An S, Chen W X, He X J, et al. Journal of Hebei Normal University of Science & Technology, 2022, 36(2), 74(in Chinese).
安赛, 何文秀, 陈小军, 等. 河北科技师范学院学报, 2022, 36(2), 74.
31 Lu J X, Shen P L, Sun Y J, et al. Cement and Concrete Research, 2022, 158, 1.
32 Chen C C, Wu Z M, Hu X, et al. Materials Reports, 2024, 38(15), 1(in Chinese).
陈聪聪, 吴泽媚, 胡翔, 等. 材料导报, 2024, 38(15), 1.
33 Peng G F, Niu X J, Shang Y J, et al. Cement and Concrete Research, 2018, 109, 147.
34 Li S X, Xu A Q, Tang X J, et al. Advanced Materials Research, 2011, 255, 3404.
35 ASTM international. Standard test methods for time of setting of hydraulic cement by vicat needle, ASTM, C191. West Conshohocken, 2019, PA.
36 ASTM international. Standard test method for flow of hydraulic cement mortar, ASTM, C1437. West Conshohocken, PA, 2020.
37 ASTM international. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens), ASTM, C109/C109. West Conshohocken, PA, 2021.
38 Mitsuda T, Taylor H F W. Cement and Concrete Research, 1975, 5, 203.
39 Matsui K, Kikuma J, Tsunashima M, et al. Cement and Concrete Research, 2011, 41, 510.
40 Odler I, Lea’s chemistry of cement and concrete, Elsevier Science & Technology Book, Netherland, 1998, pp. 241.
41 Zhang G, Peng G F, Zuo X Y, et al. Cement and Concrete Research, 2023, 167, 1.
42 Shen P L, Lu L N, He Y J, et al. Cement and Concrete Research, 2019, 118, 1.
43 Helmi M, Hall M R, Stevens L A, et al. Construction and Building Materials, 2016, 105, 554.
44 Chen T F, Gao X J, Ren M. Construction and Building Materials, 2018, 158, 864.
45 Yazıcı H, Deniz E, Baradan B. Construction and Building Materials, 2013, 42, 53.
46 Li Y, Sun H H, Liu X M, et al. Science in China, Series E:Technological Sciences, 2009, 52, 2695.
47 Zhuang X Y, Chen L, Komarneni S, et al. Journal of Cleaner Production, 2016, 125, 253.
[1] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[2] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[5] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[6] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[7] 余雪娟, 郑晓博, 刘建忠, 韩方玉, 沙建芳, 方若全. 超细粉体和减水剂对超高性能混凝土新拌性能的影响[J]. 材料导报, 2025, 39(10): 24030270-6.
[8] 刘凤利, 袁壮, 刘俊华, 田嘉静, 王亚光. 蒸压养护制度对电石渣-花岗岩石粉基加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24020026-6.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[11] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[12] 闵前燊, 辜涛, 何波, 魏仁杰, 刘川北, 张礼华, 刘来宝. 电石渣对CO2拌和水泥浆性能及固碳效能的影响[J]. 材料导报, 2024, 38(23): 23090082-6.
[13] 侯圣举, 李树国, 何超, 陈扬, 但建明, 周阳, 李相国, 吕阳. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 23120044-6.
[14] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[15] 郭维超, 赵庆新, 邱永祥, 石雨轩, 王帅. 碱渣-电石渣激发混凝土的基本力学性能与应力-应变关系[J]. 材料导报, 2024, 38(17): 22070247-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed