Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24070071-15    https://doi.org/10.11896/cldb.24070071
  无机非金属及其复合材料 |
基于粗骨料的混凝土弹性模量控制方法及预测模型
李良顺1,2, 李化建1,2,*, 杨志强1,2, 石贺男1,2, 董昊良1,2
1 中国铁道科学研究院,北京100081
2 高速铁路轨道系统全国重点实验室,北京100081
Control Method and Prediction Model for Concrete Elastic Modulus Based on Coarse Aggregate
LI Liangshun1,2, LI Huajian1,2,*, YANG Zhiqiang1,2, SHI Henan1,2, DONG Haoliang1,2
1 China Academy of Railway Sciences, Beijing 100081, China
2 National Key Laboratory of High Speed Railway Track System, Beijing 100081, China
下载:  全 文 ( PDF ) ( 11958KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土弹性模量是构件抗变形特性的重要研究内容,粗骨料是影响混凝土弹性模量的重要因素之一,过去的工作未能充分阐明粗骨料特性对混凝土弹性模量的影响机制。本文分析了粗骨料岩性、吸水率、弹性模量、颗粒形貌、级配和掺量对混凝土弹性模量的影响规律及作用机理;提出了通过调整粗骨料特性来改变混凝土界面过渡区(ITZ)的性能、变形量和密实度,从而控制混凝土弹性模量的方法;系统综述了国内外学者提出的混凝土弹性模量预测模型,并对不同模型的有效性进行评价,以期为不同弹性模量要求的混凝土设计提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李良顺
李化建
杨志强
石贺男
董昊良
关键词:  混凝土  粗骨料  弹性模量  影响机理  预测模型    
Abstract: Elastic modulus of concrete is an important research area for the deformation resistance of structural members, and coarse aggregate is one of the significant factors affecting the elastic modulus of concrete. The previous work has not adequately elucidated the mechanism by which coarse aggregate properties affect the elastic modulus of concrete. This paper analyzes the influence and mechanism of coarse aggregate lithology, water absorption, elastic modulus, particle morphology, gradation, and content on the elastic modulus of concrete. Methods for controlling the elastic modulus of concrete by adjusting the properties of coarse aggregates to alter the performance of the concrete interfacial transition zone (ITZ), the deformation amount of concrete, and the compactness of concrete are proposed. A systematic review of concrete elastic modulus prediction models proposed at home and abroad is provided, and the effectiveness of different models are evaluated, with the aim of providing guidance for the design of concrete with varying elastic modulus requirements.
Key words:  concrete    coarse aggregate    elastic modulus    influence mechanism    prediction model
出版日期:  2025-08-25      发布日期:  2025-08-15
ZTFLH:  TU528  
基金资助: 中国国家铁路集团有限公司科技研究开发计划课题 (J2022Z505);国家铁路局科研课题(2023-BZWW-006)
通讯作者:  李化建,中国铁道科学研究院主任研究员、博士研究生导师,高速铁路轨道系统全国重点实验室副主任。主要从事高速铁路、高原铁路高性能混凝土长期耐久性研究。chinasailor@163.com   
作者简介:  李良顺,博士研究生,在李化建研究员的指导下进行研究。主要从事高铁高性能混凝土及其结构耐久性领域的研究。
引用本文:    
李良顺, 李化建, 杨志强, 石贺男, 董昊良. 基于粗骨料的混凝土弹性模量控制方法及预测模型[J]. 材料导报, 2025, 39(16): 24070071-15.
LI Liangshun, LI Huajian, YANG Zhiqiang, SHI Henan, DONG Haoliang. Control Method and Prediction Model for Concrete Elastic Modulus Based on Coarse Aggregate. Materials Reports, 2025, 39(16): 24070071-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070071  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24070071
1 Sideris K K, Manita P, Sideris K. Cement and Concrete Composites, 2004, 26(6), 623.
2 Zhou C, Li K, Ma F. Computers and Structures, 2014, 139, 33.
3 Piasta W, Góra J, Budzyński W. Construction and Building Materials, 2017, 153, 728.
4 Chu H, Gao L, Qin J, et al. Construction and Building Materials, 2022, 335, 127385.
5 Li W W, Zheng D, Chen W Y. Concrete, 2010(3), 63(in Chinese).
李文伟, 郑丹, 陈文耀. 混凝土, 2010(3), 63.
6 Vu N A, Castel A, François R. Corrosion Science, 2009, 51(6), 1453.
7 Kalra M, Mehmood G. IOP Conference Series:Materials Science and Engineering, 2018, 431(8), 082001.
8 Chen Z Y. China Civil Engineering Journal, 1997(5), 3(in Chinese).
陈肇元. 土木工程学报, 1997(5), 3.
9 Chen Z Y. Architecture Technology, 1997 (10), 723(in Chinese).
陈肇元. 建筑技术, 1997 (10), 723.
10 Corinaldesi V. Construction and Building Materials, 2010, 24(9), 1616.
11 Perry C, Gillott J E. Cement and Concrete Research, 1977, 7(5), 553.
12 Tasong W A, Lynsdale C J, Cripps J C. Cement and Concrete Research, 1999, 29(7), 1019.
13 Prokopski G, Halbiniak J. Cement and Concrete Research, 2000, 30(4), 579.
14 Zimbelmann R. Cement and Concrete Research, 1985, 15(5), 801.
15 Zhou F P, Lydon F D, Barr B I G. Cement and Concrete Research, 1995, 25(1), 177
16 Aïtcin P C, Mehta P K. Materials Journal, 1990, 87(2), 103.
17 Sorelli L, Constantinides G, Ulm F J, et al. Cement and Concrete Research, 2008, 38(12), 1447.
18 Ouyang X, Shi C, Wu Z, et al. Cement and Concrete Research, 2020, 138, 106241.
19 Shi J H. Compressive strength and elastic modulus of ultra-high perfor-mance concrete with basalt coarse aggregate. Master's Thesis, Hunan University, China, 2020(in Chinese).
史金华. 含玄武岩粗骨料超高性能混凝土的抗压强度和弹性模量. 硕士学位论文, 湖南大学, 2020.
20 Shi J H, Shi C J, Ou Y X, et al. Materials Reports, 2021, 35 (3), 3067(in Chinese).
史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35 (3), 3067.
21 Alexander M G. Materials Journal, 1996, 93(6), 569.
22 Baalbaki W, Benmokrane B, Chaallal O, et al. Materials Journal, 1991, 88(5), 499.
23 Zheng J J, Zhou X Z, Jiang L. Acta Materiae Compositae Sinica, 2005 (1), 102(in Chinese).
郑建军, 周欣竹, 姜璐. 复合材料学报, 2005(1), 102.
24 Wang X B, Kang Z Q, Kong Y N, et al. Concrete, 2023(3), 77(in Chinese).
王晓波, 亢泽千, 孔亚宁, 等. 混凝土, 2023(3), 77.
25 Zuo J P, Chai N B, Zhao C, et al. Journal of Basic Science and Engineering, 2015, 23(5), 942(in Chinese).
左建平, 柴能斌, 赵灿, 等. 应用基础与工程科学学报, 2015, 23(5), 942.
26 Wang D, Shi C, Farzadnia N, et al. Construction and Building Materials, 2018, 181, 659.
27 Bentz D P, Ardani A, Barrett T, et al. Construction and Building Materials, 2015, 75, 1.
28 Liang Z S, Yang S B, Cui Y, et al. Water Resources and Hydropower Engineering, 2020, 51(6), 121(in Chinese).
梁中勇, 杨胜波, 崔宇, 等. 水利水电技术, 2020, 51(6), 121.
29 Lv Y N, Lan X H, Chen D M, et al. Journal of the Chinese Ceramic Society, 1994(4), 315(in Chinese).
吕忆农, 兰祥辉, 陈东明, 等. 硅酸盐学报, 1994(4), 315.
30 Liu Z, Han S F, Tang M S. Journal of the Chinese Ceramic Society, 1987(4), 302(in Chinese).
刘峥, 韩苏芬, 唐明述. 硅酸盐学报, 1987(4), 302.
31 Tang M S. Journal of the Chinese Ceramic Society, 1990, 18(4), 365(in Chinese).
唐明述. 硅酸盐学报, 1990, 18(4), 365.
32 Deng M, Qian G R, Lan X H, et al. Journal of Nanjing Tech University(Natural Science Edition), 2002(4), 1(in Chinese).
邓敏, 钱光人, 兰祥辉, 等. 南京工业大学学报(自然科学版), 2002(4), 1.
33 Zhang C M, Ramachandran V S. Journal of the Chinese Ceramic Society, 1988(2), 110(in Chinese).
章春梅, Ramachandran V S. 硅酸盐学报, 1988(2), 110.
34 Hou W, Zhang Q, Zhuang Z, et al. ACS Sustainable Chemistry and Engineering, 2024, 12(7), 2484.
35 Yuan R Z. Cementitious materials science (second edition), Wuhan University of Technology Press, China, 1996, pp. 125(in Chinese).
袁润章. 胶凝材料学 (第二版), 武汉理工大学出版社, 1996, pp. 125.
36 Shi Y, Yang H Q, Chen X, et al. Journal of Building Materials, 2015, 18(1), 133(in Chinese).
石妍, 杨华全, 陈霞, 等. 建筑材料学报, 2015, 18(1), 133.
37 Chen Q, Zhang J, Wang Z, et al. Engineering Fracture Mechanics, 2024, 300, 109979.
38 Zhou G Y. Journal of Wuhan University of Technology, 2005(11), 89(in Chinese).
周国勇. 武汉理工大学学报, 2005(11), 89.
39 He X F, Miao C Y. Journal of Southeast University(Natural Science Edition), 2009, 39 (S2), 268(in Chinese).
何小芳, 缪昌文. 东南大学学报(自然科学版), 2009, 39 (S2), 26.
40 Wu F, Xu L, Chi Y, et al. Composite Structures, 2020, 236, 111810.
41 Aydin S, Yazici H, Yardimci M Y, et al. ACI Materials Journal, 2010, 107(5).
42 Yang Z J. Experimental investigation on the effects of the elastic modulus of SCC. Master's Thesis, Hunan University, China, 2011(in Chinese)
杨志坚. 自密实混凝土弹性模量影响因素的研究. 硕士学位论文. 湖南大学, 2011.
43 Dong H, Qian C X. Journal of the Chinese Ceramic Society, 2008(S1), 192(in Chinese).
董华, 钱春香. 硅酸盐学报, 2008(S1), 192.
44 Su J, Dong Y, Yang H Q. Concrete, 2019(1), 97(in Chinese).
苏杰, 董芸, 杨华全. 混凝土, 2019(1), 97.
45 Su J, Dong Y, Yang H Q. Concrete, 2019(4), 87(in Chinese).
苏杰, 董芸, 杨华全. 混凝土, 2019(4), 87.
46 Su J, Yang H Q, Zhang L, et al. Journal of Building Materials, 2014, 17(4), 598(in Chinese).
董芸, 杨华全, 张亮, 等. 建筑材料学报, 2014, 17(4), 598.
47 Hong L, Gu X, Lin F. Construction and Building Materials, 2014, 65, 338.
48 Chegbeleh L P, Nkansah L O, Ackah F S, et al. Journal of Engineering Research and Reports, 2020, 15(4), 45.
49 Alli O, Odewumi T, Alli J. Civil and Environmental Research, 2018(6), 6.
50 Zhao Y, Zeng W, Zhang H. Construction and Building Materials, 2017, 152, 539.
51 Casuccio M, Torrijos M C, Giaccio G, et al. Construction and Building Materials, 2008, 22(7), 1500.
52 Almusallam A A, Beshr H, Maslehuddin M, et al. Cement and Concrete Composites, 2004, 26(7), 891.
53 Cui H Z, Shi X, Memon S A, et al. Journal of Materials in Civil Engineering, 2015, 27(4), 04014138.
54 Zhang Z Q. Effect of aggregate varietieson mechanical characteristics of hydraulic concrete and numerical simulation of concrete. Master's Thesis, Changjiang River Scientific Research Institute, China, 2018(in Chinese).
张子琴. 骨料品种对水工混凝土力学性能的影响及混凝土数值模拟. 硕士学位论文, 长江科学院, 2018.
55 Mehta P K. Concrete structure, properties and materials, Tongji University Press, China, 1991, pp. 163(in Chinese).
Mehta P K. 混凝土的结构、性能与材料, 同济大学出版社, 1991, pp. 163.
56 Ahmad S, Zubair A, Maslehuddin M. Construction and Building Materials, 2015, 99, 73.
57 Zhou L X. Journal of Guizhou University of Technology (Natural Science Edition), 2005(3), 111(in Chinese).
周丽霞. 贵州工业大学学报(自然科学版), 2005(3), 111.
58 Prajapati J, Karanjit S. Journal of Science and Engineering, 2019, 7, 52.
59 Pang T F, Zhang Z, Huang W, et al. Shanxi Architecture, 2019, 45 (11), 89(in Chinese).
庞太富, 张正, 黄蔚, 等. 山西建筑, 2019, 45 (11), 89.
60 Yang H, Li Z L, Hui H Y. Journal of Changjiang River Scientific Research Institute, 2016, 33(2), 100(in Chinese).
杨华, 李宗利, 惠弘毅. 长江科学院院报, 2016, 33(2), 100.
61 Li C, Zhou M, Li Y, et al. Materials Reports, 2024, 38(4), 124(in Chinese).
李超, 周梅, 李杨, 等. 材料导报, 2024, 38(4), 124.
62 Tie F B, Guo Z F. Railway Construction Technology, 2016(5), 108(in Chinese).
帖锋斌, 郭张锋. 铁道建筑技术, 2016(5), 108.
63 Wang Q, Li Z, Zhang Y, et al. Journal of Building Engineering, 2020, 32, 101748.
64 Li G W. Design of Hydroelectric Power Station, 2008(3), 1(in Chinese).
李光伟. 水电站设计, 2008(3), 1.
65 Nilsen A U, Monteiro P J M. Cement and Concrete Research, 1993, 23(1), 147.
66 Davis D E, Alexander M G. Civil Engineer in South Africa, 1992(5), 161.
67 Ouyang Y L, Chen X J, Cai Y B. Journal of Building Materials, 2011, 14(6), 834(in Chinese).
欧阳幼玲, 陈迅捷, 蔡跃波. 建筑材料学报, 2011, 14(6), 834.
68 Memon S A, Bekzhanova Z, Murzakarimova A. Buildings, 2022, 12(10), 1600.
69 Lin C, Jin X Y, Li Z J. Concrete, 2004(10), 32(in Chinese).
林辰, 金贤玉, 李宗津. 混凝土, 2004(10), 32.
70 Yang H Y. Study on the effect of aggregate characteristics on the crack resistance of steel fiber reinforced concrete. Master's Thesis, Chongqing Jiaotong University, China, 2023(in Chinese).
杨昊宇. 骨料特征对钢纤维混凝土抗裂性能影响研究. 硕士学位论文, 重庆交通大学, 2023.
71 Rao G A, Prasad B K R. Cement and Concrete Research, 2002, 32(2), 247.
72 Beygi M H A, Kazemi M T, Nikbin I M, et al. Cement and Concrete Research, 2014, 66, 75.
73 Yildirirn H, Sengul O. Construction and Building Materials, 2011, 25(4), 1645.
74 Wang B Y, Liu X J, Ji H J, et al. Journal of Changchun Institute of Technology(Natural Sciences Edition), 2012, 13(4), 13(in Chinese).
王宝媛, 刘秀杰, 纪海军, 等. 长春工程学院学报(自然科学版), 2012, 13(4), 13.
75 Petersson P E. Cement and Concrete Research, 1980, 10(1), 91.
76 Saouma V E, Broz J J, Brühwiler E, et al. Journal of Materials in Civil Engineering, 1991, 3(3), 204.
77 Elices M, Rocco C G. Engineering Fracture Mechanics, 2008, 75(13), 3839.
78 Pettijohn F G. Sedimentary Rocks (3rd ed. ), Harper & Brothers,USA, 1984.
79 Liu L, Shen D, Chen H, et al. Computers and Structures, 2014, 144, 40.
80 Piotrowska E, Malecot Y, Ke Y. Mechanics of Materials, 2014, 79, 45.
81 Akçaolu T. Construction and Building Materials, 2017, 143, 376.
82 Chen X L. Anhui Architecture, 2020, 27(12), 182(in Chinese).
陈晓玲. 安徽建筑, 2020, 27(12), 182.
83 Huang X F. Effect of coarse aggregate shape on the physicomechanical properties of concrete. Master's Thesis, Zhejiang University of Technolog, China, 2010(in Chinese).
黄晓峰. 粗骨料形状对混凝土物理和力学性能的影响. 硕士学位论文, 浙江工业大学, 2010.
84 Hong L, Gu X L, Lin F, et al. Journal of Materials in Civil Engineering, 2019, 31(10), 04019226.
85 Choubane B, Wu C L, Tia M. Transportation Research Record, 1996, 1547(1), 29.
86 Liu C, Xie D, She W, et al. Construction and Building Materials, 2018, 189, 1251.
87 Guo L X, Li S, Zhong L, et al. Materials Reports, 2022, 36(15), 65(in Chinese).
郭利霞, 李松, 钟凌, 等. 材料导报, 2022, 36(15), 65.
88 Zhao Y, Duan Y, Zhu L, et al. Construction and Building Materials, 2021, 286, 122940.
89 Du Q Z. Development Guide to Building Materials, 1996(4), 33(in Chinese).
杜庆檐. 建材发展导向, 1996(4), 33.
90 Mitchell J K, Soga K. Fundamentals of soil behavior, John Wiley & Sons, USA, 2005.
91 Zhou C, Chen Z. Construction and Building Materials, 2017, 134, 497.
92 Tian P P, Qiu H X, Yu J, et al. Journal of Lanzhou University(Natural Sciences), 2019, 55(6), 821(in Chinese).
田盼盼, 邱洪兴, 于江, 等. 兰州大学学报(自然科学版), 2019, 55(6), 821.
93 Nadeau J C. Cement and Concrete Research, 2003, 33(1), 103.
94 Li G, Zhao Y, Pang S S. Cement and Concrete Research, 1999, 29(6), 839.
95 Zhu W, Gibbs J C, Bartos P J M. Cement and Concrete Composites, 2001, 23(1), 57.
96 Ho D W S, Sheinn A M M, Ng C C, et al. Cement and Concrete Research, 2002, 32(4), 505.
97 Li Q, Deng Z, Fu H. Materials Journal, 2004, 101(6), 483.
98 Wang J B, Zhang T X, Ding J S, et al. Transactions of Beijing Institute of Technology, 2021, 41(11), 1162(in Chinese).
王江波, 张天星, 丁俊升, 等. 北京理工大学学报, 2021, 41(11), 1162.
99 Gao H Z, Xia Q L, Li M X, et al. Water Resources and Hydropower Engineering, 2024, 55(S1), 476(in Chinese).
高怀振, 夏求林, 李明霞, 等. 水利水电技术(中英文), 2024, 55(S1), 476.
100 Xu H, Liu Q, He Y Y, et al. Industrial Construction, 2015, 45(5), 97(in Chinese).
徐欢, 刘清, 何原野, 等. 工业建筑, 2015, 45(5), 97.
101 Liu B F. Study on the formulation of C50 self-compacting concrete and the effect of coarse aggregate on its modulus of elasticity. Master's Thesis, Central South University, China, 2007(in Chinese).
刘冰峰. C50自密实混凝土的配制及粗骨料对其弹性模量的影响研究. 中南大学, 2007.
102 Liu Y D, Chen J, Lin X H, et al. China Concrete and Cement Pro-ducts, 2014(9), 25(in Chinese).
刘永道, 陈景, 林喜华, 等. 混凝土与水泥制品, 2014(9), 25.
103 Fabien A, Choinska M, Bonnet S, et al. Key Engineering Materials, 2017, 729, 115.
104 Zhan J S, Song J C, Zhou Q J, et al. China Concrete, 2015(9), 72(in Chinese).
赵劲松, 宋军超, 周其家, 等. 混凝土世界, 2015(9), 72.
105 Wang S G. China Concrete and Cement Products, 1994(3), 18(in Chinese).
王世贵. 混凝土与水泥制品, 1994(3), 18.
106 Sheng L, Ye Q, Bao Y T, et al. Concrete, 2003(8), 10(in Chinese).
盛黎, 叶青, 鲍永涛, 等. 混凝土, 2003(8), 10.
107 Long G C, Xie Y J, Jiang Z W, et al. Journal of Building Materials, 2004(3), 269(in Chinese).
龙广成, 谢友均, 蒋正武, 等. 建筑材料学报, 2004(3), 269.
108 Cheng J, Liu J P, Liu J Z, et al. Materials Reports, 2017, 31(23), 115(in Chinese).
程俊, 刘加平, 刘建忠, 等. 材料导报, 2017, 31(23), 115.
109 Han Y D, Zhang J, Wang Z B. Journal of Harbin Institute of Technology, 2013, 45(4), 84(in Chinese).
韩宇栋, 张君, 王振波. 哈尔滨工业大学学报, 2013, 45(4), 84.
110 Akcay B, Agar-Ozbek A S, Bayramov F, et al. Construction and Building Materials, 2012, 28(1), 437.
111 Chen Y W, Feng J L, Zhu T Y, et al. Acta Materiae Compositae Sinica, 2022, 39(10), 4972(in Chinese).
陈燕伟, 冯吉利, 朱天宇, 等. 复合材料学报, 2022, 39(10), 4972.
112 Huang Z Y, Li S G. Journal of Hunan University (Natural Sciences), 2018, 45(3), 47(in Chinese).
黄政宇, 李仕根. 湖南大学学报(自然科学版), 2018, 45(3), 47.
113 Shen C Q, Li B X. Journal of Materials Science and Engineering, 2021, 39(1), 35(in Chinese).
沈楚琦, 李北星. 材料科学与工程学报, 2021, 39(1), 35.
114 Zhang X. China Concrete, 2023(1), 17(in Chinese).
张潇. 混凝土世界, 2023(1), 17.
115 Tasdemir M A, Karihaloo B L. Magazine of Concrete Research, 2001, 53(6), 405.
116 Huang W R, Yang Y Z, Liu Y J, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1747(in Chinese).
黄维蓉, 杨玉柱, 刘延杰, 等. 硅酸盐学报, 2020, 48(11), 1747.
117 Helmuth R A, Turk D H. Elastic moduli of hardened Portland cement pastes: effect of porosity, National Academy of Engineering, 1966, pp.13.
118 Haecker C J, Garboczi E J, Bullard J W, et al. Cement and Concrete Research, 2005, 35(10), 1948.
119 Shah S P, Chandra S. Journal Proceedings, 1968, 65(9), 770.
120 Alexander M, Mindess S. Aggregates in concrete (1st ed. ), CRC Press, USA, 2005.
121 Alexander M G. In:Proceedings International Rilem Conference. Noordwijk, Netherlands, E & FN Spon, London, 1991.
122 Scrivener K L, Crumbie A K, Laugesen P. Interface Science, 2004, 12, 411.
123 Gao Y, De Schutter G, Ye G, et al. Composites Part b: engineering, 2014, 60, 1.
124 Huang H F. Performance evolution mechanism of high performance concreteunder the action of environmental thermal fatigue. Ph. D. Thesis, Beijing Jiaotong University, China, 2020(in Chinese).
黄瀚锋. 环境热疲劳作用下高性能混凝土性能演化机理研究. 博士学位论文, 北京交通大学, 2020.
125 Li J S, Ren W Y, Zhang A J, et al. Journal of Water Resources and Water Engineering, 2021, 32(6), 170(in Chinese).
李俊生, 任文渊, 张爱军, 等. 水资源与水工程学报, 2021, 32(6), 170.
126 Saito M, Kawamura M. Cement and Concrete Research, 1986, 16(5), 653.
127 Beushausen H, Dittmer T. Construction and Building Materials, 2015, 74, 132.
128 Chiaia B, Van Mier J G M, Vervuurt A. Cement and Concrete Research, 1998, 28(1), 103.
129 Zhao G T, Li H J. High-speed railway high-performance concrete application management technology, China Railway Publishing House, China, 2009, pp. 74(in Chinese).
赵国堂, 李化建. 高速铁路高性能混凝土应用管理技术, 中国铁道出版社, 2009.
130 Nežerka V, Bílý P, Hrbek V, et al. Cement and Concrete Composites, 2019, 103, 252.
131 Xu Z, Bai Z J, Wu J N, et al. Nanotechnology Reviews, 2022, 11(1), 2078.
132 Zhang L X, Chen B, Lv W M. Sichuan Building Science, 2000(3), 55(in Chinese).
张立新, 陈兵, 吕伟民. 四川建筑科学研究, 2000(3), 55.
133 Guinea G V, El-Sayed K, Rocco C G, et al. Cement and Concrete Research, 2002, 32(12), 1961.
134 Zheng X B, Han F Y, Liu J Z, et al. Journal of the Chinese Ceramic Society, 2022, 50(11), 2844(in Chinese).
郑晓博, 韩方玉, 刘建忠, 等. 硅酸盐学报, 2022, 50(11), 2844.
135 Wang Y F. The synergistic effect of coarse aggregate and cement mortar on concrete performance was studied. Master's Thesis, Dalian Jiaotong University, China, 2020(in Chinese).
王云枫. 粗骨料与水泥砂浆协同作用影响混凝土性能试验研究. 硕士学位论文, 大连交通大学, 2020.
136 Clark, Sydney P. Handbook of physical constants, Geological Society of America, USA, 1966.
137 Zhang J, Sun H, Wan J, et al. Construction and Building Materials, 2009, 23(11), 3393.
138 Ke Y, Ortola S, Beaucour A L, et al. Cement and Concrete Research, 2010, 40(11), 1590.
139 Cui Z L, Lu S S, Wang Z S. Bulletin of the Chinese Ceramic Society, 2011, 30(3), 5(in Chinese).
崔正龙, 路沙沙, 汪振双. 硅酸盐通报, 2011, 30(3), 5.
140 Beshr H, Almusallam A A, Maslehuddin M. Construction and Building Materials, 2003, 17(2), 97.
141 Wu K R, Chen B, Yao W, et al. Cement and Concrete Research, 2001, 31(10), 1421.
142 Fuller W B, Thompson S E. Transactions of the American Society of Civil Engineers, 1907, 59(2), 67.
143 Talbot A N, Richart F E. The strength of concrete: its relation to the cement, aggregate and water.Ph.D.Thesis, Bull. of the Eng. Exp. Station, University of Illinois, Urbana, 1923.
144 Gee G W, Bauder J W. Particle-size analysis, American Society of Agronomy/Soil Science Society of America, Madison, WI, 1986, pp.383.
145 Bolomey J. Bulletin Technique de la Suisse Romande, 1927(16), 22.
146 Wang L J, Liu H. Highway, 2008(1), 170(in Chinese).
王立久, 刘慧. 公路, 2008(1), 170.
147 Liu J J. Dence framework cement graval grassroots research. Master's Thesis, Hebei University of Technology, China, 2007(in Chinese).
刘金杰. 骨架密实型水泥碎石基层研究. 硕士学位论文, 河北工业大学, 2007.
148 Goltermann P, Johansen V, Palbøl L. Materials Journal, 1997, 94(5), 435.
149 Stovall T, De Larrard F, Buil M. Powder Technology, 1986, 48(1), 1.
150 De Larrard F. Concrete mixture proportioning, a scientific approach, CRC Press, UK, 1999.
151 Niu H Y. Study on elastic modulus of concrete based on mesomechanical model. Master's Thesis, Henan University, China, 2016(in Chinese).
牛贺洋. 基于细观力学模型的混凝土弹性模量研究. 硕士学位论文, 河南大学, 2016.
152 Chen Y B. Analysis and research on the factorsaffecting the elastic mo-dulus of C50 concrete used in Yunnan highway. Master's Thesis, Yunnan University, China, 2016(in Chinese).
陈彦博. 云南高速公路C50混凝土弹性模量影响因素分析与实验研究. 硕士学位论文, 云南大学, 2016.
153 Jiang Z W, Zhou L, Li W T. Journal of Building Materials, 2014, 17(4), 649(in Chinese).
蒋正武, 周磊, 李文婷. 建筑材料学报, 2014, 17(4), 649.
154 Chen H G, Xu J. Tunnel Construction, 2012, 32(6), 802(in Chinese).
陈洪光, 许将. 隧道建设, 2012, 32(6), 802.
155 Guo X Y, Kang J F, Zhu J S. Journal of Southeast University(Natural Science Edition), 2017, 47(2), 369(in Chinese).
郭晓宇, 亢景付, 朱劲松. 东南大学学报(自然科学版), 2017, 47(2), 369.
156 Noguchi T, Nemati K M. Journal of Structural and Construction Engineering, 1995, 60, 1.
157 Minstry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures:GB 50010-2010, China Building Industry Press, China, 2015(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010, 中国建筑工业出版社, 2015.
158 CSA A23. 3-19. Design of concrete structures, Canadian Standard Association, Canada, 2019.
159 EN 1992-1-1. Eurocode 2, Design of concrete structures - Part 1-1, Ge-neral rules and rules for buildings, Ireland, 2015.
160 Ma J, Orgass M, Dehn F, et al. In:International symposium on ultra-high performance concrete. Kassel, 2004, pp. 205.
161 ACI Committee 318-95. Building code requirements for reinforced concrete, Metric System, American Concrete Institute, Detroit, US, 1995.
162 Code CEBFIPM. CEB-FIP model code for concrete structures, euro-international committe for concrete. Bulletin, 1990, 213-214, 213.
163 AIJ B. Recommendations for design and construction of concrete filled steel tubular structures, Architectural Institute of Japan (AIJ), Japan, 1997.
164 Xu Y, Jiang L, Xu J, et al. Magazine of Concrete Research, 2015, 67(17), 954.
165 Wee T H, Matsunaga Y, Watanabe Y, et al. Cement and Concrete Research, 1995, 25(4), 709.
166 Dantu P. Etude des contraintes dans les milieux hétérogènes, Application au béton Annales ITBP, Paris, 1958, pp. 46.
167 Kaplan M F. RILEM Bull.,1959(1), 58.
168 Counto U J. Magazine of Concrete Research, 1964, 16(48), 129.
169 Hashin Z. Journal of Applied Mechanics, 1962, 29(1), 2938.
170 Ouyang X, Shi C J, Shi J H, et al. Journal of the Chinese Ceramic So-ciety, 2021, 49(2), 296(in Chinese).
欧阳雪, 史才军, 史金华, 等. 硅酸盐学报, 2021, 49(2), 296.
171 Simeonov P, Ahmad S. Cement and Concrete Research, 1995, 25(1), 165.
172 Ramesh G, Sotelino E D, Chen W F. Cement and Concrete Research, 1996, 26(4), 611.
173 Yang C C. Cement and Concrete Research, 1998, 28(5), 727.
174 Zimmerman R W, King M S, Monteiro P J M. Cement and Concrete Research, 1986, 16(2), 239.
175 Ferrari M. Dissertation Abstracts International, 1990, 51(5), 101.
176 Liu M H, Wang Y F. Advanced Materials Research, 2011, 150-151, 1026.
177 Du X Q, Li Z L. Journal of Changjiang River Scientific Research Institute, 2019, 36(8), 153(in Chinese).
杜向琴, 李宗利. 长江科学院院报, 2019, 36(8), 153.
178 Wang B T, Xu D Y. Journal of Hohai University(Natural Sciences), 2000(1), 24(in Chinese).
王宝庭, 徐道远. 河海大学学报(自然科学版), 2000(1), 24.
179 Zhang D X, Li J P, Liu Z G. Journal of Changjiang River Scientific Research Institute, 2023, 40(1), 176(in Chinese).
张登祥, 李金朋, 刘智光. 长江科学院院报, 2023, 40(1), 176.
180 Li G, Xu Z H, Niu J G. Water Resources and Hydropower Engineering, 2018, 49(4), 179(in Chinese).
李革, 徐泽华, 牛建刚. 水利水电技术, 2018, 49(4), 179.
181 Zhou S Z, Chen L, Liu M Q. Journal of Building Materials, 2016, 19(1), 143(in Chinese).
周尚志, 谌林, 刘明群. 建筑材料学报, 2016, 19(1), 143.
182 Bian J, Zhang W, Shen Z, et al. Science and Engineering of Composite Materials, 2021, 28(1), 516.
183 Liang X Y. Theimprovement of numerical model on concrete Meso-mechanics and the study of it’s dynamic properties. Master's Thesis, Xi’an University Of Technology, China, 2008(in Chinese).
梁昕宇. 数值混凝土模型的改进及其细观力学特性研究. 硕士学位论文, 西安理工大学, 2008.
184 Huang X S, Yin X T, Ding W H, et al. Journal of Wuhan University of Technology, 2010, 32 (19), 50(in Chinese).
黄修山, 尹小涛, 丁卫华, 等. 武汉理工大学学报, 2010, 32 (19), 50.
185 Ju H C, Chen G R, Xia X Z. Journal of Hohai University(Natural Sciences), 2008(4), 554(in Chinese).
琚宏昌, 陈国荣, 夏晓舟. 河海大学学报(自然科学版), 2008(4), 554.
186 Jin Y M, Xu L, Chen Z T, et al. Journal of China Three Gorges University (Natural Sciences), 2019, 41(3), 1(in Chinese).
金永苗, 徐磊, 陈在铁, 等. 三峡大学学报(自然科学版), 2019, 41(3), 1.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[3] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[4] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[7] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[8] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[9] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[10] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[11] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[12] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[13] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[14] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[15] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[3] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[4] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[7] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[8] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[9] ZHAO Xueni, YANG Jianjun, HE Fuzhen, ZHANG Li, WANG Yao, ZHANG Weigang, LIU Qingyao. Surface Treatment and Molten Salt Electroplating Al Coating on Carbon Fiber[J]. Materials Reports, 2019, 33(4): 674 -677 .
[10] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed