Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24070104-6    https://doi.org/10.11896/cldb.24070104
  金属与金属基复合材料 |
均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响
李波1,2,*, 许龙1,2, 杨涵1,2, 杜勇3
1 三峡大学湖北石墨增材制造技术与装备工程研究中心,湖北 宜昌 443002
2 三峡大学机械与动力工程学院,湖北 宜昌 443002
3 中南大学粉末冶金国家重点实验室,长沙 410083
The Effects of Homogenization Treatment on the Microstructure and Properties of Age-strengthened Al-Mg-Zn-Sc-Zr Alloy
LI Bo1,2,*, XU Long1,2, YANG Han1,2, DU Yong3
1 Hubei Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment, China Three Gorges University, Yichang 443002, Hubei, China
2 College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, Hubei, China
3 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 39318KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用差示扫描量热仪(DSC)、X射线衍射仪(XRD)、光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、维氏显微硬度计和电导率仪等研究了均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响。实验结果表明:铸态Al-Mg-Zn-Sc-Zr合金存在严重的枝晶偏析,大量非平衡第二相T-Mg32(A1,Zn)49相沿晶界呈连续网状分布;同时,α-Al基体上还存在少量的初生Al3(Sc,Zr)粒子。DSC曲线显示,铸态Al-Mg-Zn-Sc-Zr合金在465 ℃处存在明显的吸热峰;因此,为避免出现过烧现象,该合金均匀化温度设置为460 ℃。随着均匀化时间从4 h延长到24 h,合金中非平衡第二相T-Mg32(A1,Zn)49相逐渐回溶到α-Al基体中,其体积分数从6.45%下降到0.55%;同时观察到合金中有大量弥散分布的二次Al3(Sc,Zr)粒子析出。随着均匀化时间延长到32 h,合金出现过烧现象。合金的硬度与电导率随均匀化时间的延长均呈现出先上升后下降的趋势,在24 h时合金的硬度与电导率达到最大值(116.71HV、30.3%IACS)。结合微观组织表征和性能分析,确定了铸态Al-Mg-Zn-Sc-Zr合金最佳均匀化工艺为460 ℃/24 h。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李波
许龙
杨涵
杜勇
关键词:  时效强化Al-Mg-Zn-Sc-Zr合金  均匀化处理  微观组织  Al3(Sc,Zr)粒子    
Abstract: The effects of homogenization treatment on the microstructure and properties of an age-strengthened Al-Mg-Zn-Sc-Zr alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness testing, and electrical conductivity measurements. The experimental results revealed that the as-cast Al-Mg-Zn-Sc-Zr alloy exhibited severe dendritic segregation, with a significant number of non-equilibrium T-Mg32(Al, Zn)49 second phases forming a continuous network along the grain boundaries. Additionally, a small amount of primary Al3(Sc, Zr) particles were observed within the α-Al matrix. The DSC curve indicated a distinct endothermic peak at 465 ℃ for the as-cast alloy; therefore, to prevent overburning, the homogenization temperature was set at 460 ℃. As the homogenization time was extended from 4 hours to 24 hours, the non-equilibrium T-Mg32(Al, Zn)49 second phases gradually dissolved back into the α-Al matrix, reducing their volume fraction from 6.45% to 0.55%. Simultaneously, a significant precipitation of dispersed secondary Al3(Sc, Zr) particles was observed. However, when the homogenization time was further extended to 32 hours, signs of overburning were detected. With the extension of homogenization time, the hardness and conductivity of the alloy increased first and then declined, and reached the maximum values of 116.71HV and 30.3%IACS at 24 hours. Based on the microstructural characterization and performance analysis, the optimal homogenization process for the as-cast Al-Mg-Zn-Sc-Zr alloy was determined to be 460 ℃ for 24 hours
Key words:  aging-strengthened Al-Mg-Zn-Sc-Zr alloy    homogenization treatment    microstructure    Al3(Sc,Zr) particle
出版日期:  2025-08-25      发布日期:  2025-08-15
ZTFLH:  TG156  
基金资助: 湖北省教育厅重点项目(D20201206);湖北省石墨增材制造技术及装备工程研究中心开放研究基金(HRCGAM202102);国家自然科学基金(52031017)
通讯作者:  李波,三峡大学机械与动力学院副教授、硕士研究生导师。主要从事轻质高强结构材料及其先进成形技术的研究工作。liboctgu@163.com   
引用本文:    
李波, 许龙, 杨涵, 杜勇. 均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响[J]. 材料导报, 2025, 39(16): 24070104-6.
LI Bo, XU Long, YANG Han, DU Yong. The Effects of Homogenization Treatment on the Microstructure and Properties of Age-strengthened Al-Mg-Zn-Sc-Zr Alloy. Materials Reports, 2025, 39(16): 24070104-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070104  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24070104
1 Deng Y L, Zhang X M. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 2115(in Chinese).
邓运来, 张新明. 中国有色金属学报, 2019, 29(9), 2115.
2 Hu Z L, Li P Z, Lu Z P et al. Rare Metal Materials and Engineering, 2021, 50(1), 23(in Chinese).
胡治流, 李平珍, 陆泽鹏, 等. 稀有金属材料与工程, 2021, 50(1), 23.
3 Fang H J, Liu H, Sun J,et al. Materials Reports, 2023, 37(21), 211(in Chinese).
房洪杰, 刘慧, 孙杰, 等. 材料导报, 2023, 37(21), 211.
4 Shen G W, Chen X L, Yan J, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(12), 4002 (in Chinese).
沈顾伟, 陈小林, 闫捷, 等. 中国有色金属学报, 2023, 33(12), 4002.
5 Ding Y S, Gao K Y, Guo S S, et al. Rare Metal Materials and Engineering, 2020, 49(5), 1803(in Chinese).
丁宇升, 高坤元, 郭姗姗, 等. 稀有金属材料与工程, 2020, 49(5), 1803.
6 Gao J M, Huang H, Shi W, et al. Journal of Materials Engineering, 2022, 50(11), 101(in Chinese).
高杰明, 黄晖, 石薇, 等. 材料工程, 2022, 50(11), 101.
7 Yang L, Luo B H, Zhan G, et al. Journal of Central South University, 2012, 43(12), 4666(in Chinese).
杨磊, 罗兵辉, 占戈, 等. 中南大学学报, 2012, 43(12), 4666.
8 Wang Y C, Tong X, You G Q, et al. Rare Metal Materials and Engineering, 2021, 50(3), 1069(in Chinese).
王一唱, 童鑫, 游国强, 等. 稀有金属材料与工程, 2021, 50(3), 1069.
9 Sun H M, Liu C L, Chen J, et al. Heat Treatment of Metals, 2023, 48(3), 263(in Chinese).
孙红梅, 刘翠玲, 陈健, 等. 金属热处理, 2023, 48(3), 263.
10 Zhang J, Gao Y, Yang C, et al. Rare Metal Materials and Engineering, 2020, 39(6), 636.
11 Zhou M, Gan P Y, Deng H H, et al. Materials China, 2018, 37(2), 154(in Chinese).
周民, 甘培原, 邓鸿华, 等. 中国材料进展, 2018, 37(2), 154.
12 Da X, Wu W, Wei S, et al. Intermetallics, 2023, 158,107907.
13 Ding J, Zhao Y J, Li Z F, et al. Materials Reports, 2020, 34(18), 18086(in Chinese).
丁俊, 赵艳君, 李志飞, 等. 材料导报, 2020, 34(18), 18086.
14 Zhang J, Tang C, Zhao J J, et al. Rare Metal Materials and Engineering, 2017, 46(11), 3491(in Chinese).
张静, 唐聪, 赵婧婧, 等. 稀有金属材料与工程, 2017, 46(11), 3491.
15 Wang P Y, Ye L Y, Ke B, et al. Journal of Central South University, 2024, 55(1), 55(in Chinese).
王鹏宇, 叶凌英, 柯彬, 等. 中南大学学报(自然科学版), 2024, 55(1), 55.
16 Li P Y, Xiong B Q, Zhang Y A, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(11), 2101.
17 He C Y, Mo W F, Luo B H, et al. Materials Reports, 2020, 34(12), 12083(in Chinese).
何翠云, 莫文锋, 罗兵辉, 等. 材料导报, 2020, 34(12), 12083.
18 Chao D Y, Yu F, Li H P, et al. Materials Reports, 2020, 34(S2), 1362(in Chinese).
晁代义, 于芳, 李红萍, 等. 材料导报, 2020, 34(S2), 1362.
19 Xiao J, Yin Z M, Huang J W, et al. Journal of Central South University, 2008(5), 975 (in Chinese).
肖静, 尹志民, 黄继武, 等. 中南大学学报, 2008(5), 975.
20 Liu T, He C, Li G, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(5), 516.
21 Wang Y C, Yuan L Y, Yang L, et al. Rare Metal Materials and Engineering, 2023, 52(11), 3954(in Chinese).
王一唱, 袁灵洋, 杨磊, 等. 稀有金属材料与工程, 2023, 52(11), 3954.
22 Wang Y J, Ma H C, Xu Z D, et al. Journal of Materials Engineering, 2024, 1(11), 5(in Chinese).
王艳晶, 马寰宸, 徐再东, 等. 材料工程, 2024, 1(11), 5.
23 Yu F, Chao D Y, Xiong L, et al. Materials Reports, 2021, 35(S1), 411(in Chinese).
于芳, 晁代义, 邢雷, 等. 材料导报, 2021, 35(S1), 411.
24 Wu H L, Chen Y Q, Lin L, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(11), 3689(in Chinese).
巫海亮, 陈宇强, 林林, 等. 中国有色金属学报, 2023, 33(11), 3689.
25 Liu L, Cui X Y, Jiang J T, et al. Materials Characterization, 2019, 157.
26 Ikeda K, Takashita T, Akiyoshi R, et al. Materials Transactions, 2018, 59(4), 590.
27 Knipling K E, Seidman D N, Dunand D C. Acta Mater, 2011, 59, 945.
28 Ding F J, Jia X D, Hong T J, et al. Materials Reports, 2021, 35(8), 8108(in Chinese).
丁凤娟, 贾向东, 洪腾蛟, 等. 材料导报, 2021, 35(8), 8108.
29 Yuan D L, Chen S Y, Zhou L, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(12), 2393 (in Chinese).
袁丁玲, 陈送义, 周亮, 等. 中国有色金属学报, 2018, 28(12), 2393.
30 Li C, Chen W L, Lei Y, et al. Journal of Materials Engineering, 2019, 47(2), 90 (in Chinese).
李灿, 陈文琳, 雷远, 等. 材料工程, 2019, 47(2), 90.
[1] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[2] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 龚海军, 王玲, 亢红叶, 左乾隆, 安治国, 高正源. 铝合金粉末80 μm大层厚SLM成型熔池形貌与组织演变[J]. 材料导报, 2025, 39(16): 24080006-7.
[6] 刁旺战, 徐祥久, 王萍, 赵卫君, 刘海, 张松. Haynes 282焊接接头长时热暴露后的力学性能和组织稳定性[J]. 材料导报, 2025, 39(14): 24050002-7.
[7] 麻相龙, 曹睿, 徐灏, 周宁, 高爽, 徐志伟. CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能[J]. 材料导报, 2025, 39(12): 24060014-7.
[8] 孙磊, 何鹏, 张亮, 张墅野, 王文昊, 张潘杰. TiN纳米颗粒增强Sn焊点的性能与组织研究[J]. 材料导报, 2025, 39(10): 24030018-4.
[9] 张兵宪, 陈素明, 贺韡, 牛鹏亮, 黄春平. 补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2025, 39(10): 24040146-6.
[10] 张建波, 沈琪飞, 尹宁康, 张晋涵, 刘敬萱. Ni/P质量比对Cu-Ni-P合金组织和性能的影响[J]. 材料导报, 2025, 39(10): 24030240-6.
[11] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[14] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[2] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[3] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[4] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[5] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
[10] WANG Yunpeng, HU Jiawei, XU Xiaoyun, LIU Daofeng, JIANG Hongzhang, WANG Xiaoyong, YAN Yinbiao. Research Progress of Effect of Multi-directional Forging on Microstructure and Properties of Aluminum Alloys[J]. Materials Reports, 2019, 33(13): 2266 -2271 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed