Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100238-7    https://doi.org/10.11896/cldb.24100238
  无机非金属及其复合材料 |
利用生物模板法制备钒酸铋光催化剂降解废水四环素的性能研究
钱晟1,2,3, 杨依婕1,2,3, 缪应荣1,2,3, 方应瞳1,2,3, 李兴勇1,2,3,4, 刘娜1,2,3,4, 张伟1,2,3,4,*, 胡鹏1,2,3,4, 陈玉保1,2,3,4,*
1 云南师范大学能源与环境科学学院,昆明 650500
2 云南省教育厅生物质绿色能源与平台化合物重点实验室,昆明 650500
3 云南省低碳农业绿色发展技术国际研发中心,昆明 650500
4 云南省农村能源工程重点实验室,昆明 650500
PerformanceStudy of Bismuth Vanadate Photocatalyst Prepared Using Biological Template Method for Degradation of TCH in Wastewater
QIAN Sheng1,2,3, YANG Yijie1,2,3, MIAO Yingrong1,2,3, FANG Yingtong1,2,3, LI Xingyong1,2,3,4, LIU Na1,2,3,4, ZHANG Wei1,2,3,4,*, HU Peng1,2,3,4, CHEN Yubao1,2,3,4,*
1 School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China
2 Key Laboratory of Biomass Green Energy and Platform Compounds, Yunnan Provincial Department of Education, Kunming 650500, China
3 International R & D Centre for Low Carbon Agriculture and Green Development Technology of Yunnan Province, Kunming 650500, China
4 Yunnan Provincial Key Laboratory of Rural Energy Engineering, Kunming 650500, China
下载:  全 文 ( PDF ) ( 32235KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着抗生素在医药和农业中的大量使用,水污染问题日益突出,迫切需要开发有效的处理技术。光催化技术因环保、高效的特点在水处理领域受到广泛关注。本工作采用生物模板法,以不同生物质为模板,利用单相钒酸铋(BiVO4)设计合成了性能优异的钒酸铋催化剂,研究了其对含盐酸四环素(TCH)废水的光降解能力。结果表明,以马尾草为模板合成的催化剂(MB)比表面积达1.238 3 m2/g,平均孔径是溶胶-凝胶法制备的催化剂的2倍,其电化学阻抗谱也有着最小的奈奎斯特半径,表明其光催化过程中载流子迁移效率最高,因而表现出最佳性能:在1 h内有效降解TCH,降解率近70%。本工作揭示了钒酸铋的制备策略和性能优化策略,可为抗生素污水的处理提供潜在解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱晟
杨依婕
缪应荣
方应瞳
李兴勇
刘娜
张伟
胡鹏
陈玉保
关键词:  生物模板法  四环素(TCH)  钒酸铋光催化剂  废水处理  光催化    
Abstract: The widespread use of antibiotics in medicine and agriculture has made water pollution a pressing issue, underscoring the urgent need for effective treatment technologies. Photocatalytic technology has gained significant attention for water treatment due to its environmentally friendly and efficient properties. In this study, high-performance BiVO4 catalysts have been designed and synthesized via the biotemplate method using single-phase bismuth vanadate (BiVO4). The photodegradation ability of tetracycline hydrochloride (TCH)-contained wastewater has been investigated. The MB catalyst synthesized using Sargassum as a template exhibited a large specific surface area of 1.238 3 m2/g, an average pore size 100% larger than that of the sol-gel prepared catalyst, and a superior photocarrier separation efficiency due to the smallest Nyquist radius, thereby enhancing the photocatalytic performance. As a result, MB demonstrated the best degradation efficacy among the tested catalysts, as it effectively catalyzed TCH degradation (degradation rate approached 70%) within a relatively short period (1 h). This study elucidated the preparation strategy and performance optimization of BiVO4, and may provide a potentially effective solution for treating antibiotics-contaminated water.
Key words:  biological template method    tetracycline hydrochloride (TCH)    BiVO4 photocatalyst    wastewater treatment    photocatalysis
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  X703  
基金资助: 国家自然科学基金(21868014;22469024);云南省重点研发计划(202403AK140056);云南省教育厅科学研究基金(2024J0138);云南省环境科学学会科学研究基金(XHKYKT006);云南省基础研究计划重点项目(202301AS070011);云南省马隆龙专家工作站平台项目(202205AF150024);云南省科技人才平台计划(202105AC160058);云南省2021年低碳发展引导专项(云财资环[2021]135号)
通讯作者:  *张伟,博士,云南师范大学能源与环境科学学院副教授、硕士研究生导师。目前主要从事固体废弃物资源化利用、生物质能开发与碳减排的研究。210087@ynnu.edu.cn
陈玉保,博士,云南师范大学能源与环境科学学院教授、博士研究生导师。目前主要从事生物质开发与利用、烟草化学和能源化工等方面的研究工作。chenyubao@ynnu.edu.cn   
作者简介:  钱晟,云南师范大学能源与环境科学学院硕士研究生,主要研究领域为生物质能开发与利用。
引用本文:    
钱晟, 杨依婕, 缪应荣, 方应瞳, 李兴勇, 刘娜, 张伟, 胡鹏, 陈玉保. 利用生物模板法制备钒酸铋光催化剂降解废水四环素的性能研究[J]. 材料导报, 2025, 39(21): 24100238-7.
QIAN Sheng, YANG Yijie, MIAO Yingrong, FANG Yingtong, LI Xingyong, LIU Na, ZHANG Wei, HU Peng, CHEN Yubao. PerformanceStudy of Bismuth Vanadate Photocatalyst Prepared Using Biological Template Method for Degradation of TCH in Wastewater. Materials Reports, 2025, 39(21): 24100238-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100238  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100238
1 Wang R Y, Zhu P W, Liu J D, et al. Journal of Nanjing Agricultural University, 2025(2), 392 (in Chinese).
王若莹, 朱鹏伟, 刘嘉迪, 等. 南京农业大学学报, 2025(2), 392.
2 Daghrir R, Drogui P. Environmental Chemistry Letters, 2013, 11(3), 209.
3 Wen K H, Chen J M, Lin S P, et al. Housing Industry, 2024(10), 66 (in Chinese).
问凯宏, 陈静敏, 林卲澎, 等. 住宅产业, 2024(10), 66.
4 Qi W N. Microbial degradation mechanism of tetracycline antibiotics. Master’s Thesis, Guizhou Normal University, China, 2019 (in Chinese)
祁为宁. 四环素类抗生素的微生物降解机理. 硕士学位论文, 贵州师范大学, 2019.
5 Deng W Q, Liu R Y, Liang B Y, et al. China Ceramics, 2024, 60(10), 31 (in Chinese).
邓文强, 刘人源, 梁博宇, 等. 中国陶瓷, 2024, 60(10), 31.
6 Li S Z, Nie Y C, Keomeesay P, et al. Chemical Industry and Engineering Progress, 2024, 43(S1), 225 (in Chinese).
李帅哲, 聂懿宸, Keomeesay P, 等. 化工进展, 2024, 43(S1), 225.
7 Wang H. Preparation of bismuth vanadate composite photocatalytic material and the performance of visible light degradation of tetracycline wastewater. Master’s Thesis, Qingdao University of Science and Technology, China, 2023(in Chinese)
王辉. 钒酸铋复合光催化材料的制备及可见光下降解四环素废水性能研究. 硕士学位论文, 青岛科技大学, 2023.
8 Wang Q, Bai X, Zhang Y, et al. ACS Applied Nano Materials, 2020, 3(2), 1934.
9 Shi S Q, Zhang S C, Zhang D J, et al. Inorganic Chemicals Industry, 2021, 53(11), 114 (in Chinese).
史苏琦, 张守臣, 张迪嘉, 等. 无机盐工业, 2021, 53(11), 114.
10 Yu J, Kudo A. Advanced Functional Materials, 2006, 16(16), 2163.
11 Zhang J, Yan M, Yuan X, et al. Journal of Colloid and Interface Science, 2018, 529, 11.
12 Nie Y C, Li S Z, Gu W, et al. Materials Reports, 2025, 39(11), 261 (in Chinese).
聂懿宸, 李帅哲, 顾雯, 等. 材料导报, 2025, 39(11), 261.
13 Liu A P, Yu C. Materials Reports, 2018, 32(S2), 195.
刘爱平, 郁超. 材料导报, 2018, 32(S2), 195.
14 Yu Y J, Li J R, Zhou S F, et al. Journal of Chemical Industry and Engineering(China), 2023, 74(7), 2735 (in Chinese).
余娅洁, 李静茹, 周树锋, 等. 化工学报, 2023, 74(7), 2735.
15 Wang X, Shen Y, Zuo G, et al. Materials Technology, 2016, 31(3), 176.
16 Liu L, Hu J, Ma Z, et al. Nature Communications, 2024, 15(1), 305.
17 Lotfi S, Ouardi M E, Ahsaine H A, et al. Catalysis Reviews, 2022, 66(1), 214.
18 Zexer N, Kumar S, Elbaum R. Annals of Botany, 2023, 131(6), 897.
19 Xu L, Tian J, Wu H, et al. Advances in Colloid and Interface Science, 2018, 256, 340.
20 Yuan J, Feng W, Zhang Y, et al. Advanced Materials, 2023, 36(5), 2303845.
21 Zhao YY, Fan J Y, Wei J, et al. Materials Reports, 2023, 37(5), 59 (in Chinese).
赵艳艳, 范敬煜, 魏景, 等. 材料导报, 2023, 37(5), 59.
22 Chen X, Li P, Gao S, et al. New Journal of Chemistry, 2023, 47(28), 13169.
23 Xie X, Shang L, Xiong X, et al. Advanced Energy Materials, 2021, 12(3), 2102688.
24 Wu X, Zhang H, Zuo S, et al. Nano-Micro Letters, 2021, 13(1), 136.
25 Liu Z, Song C, Zuo W, et al. Journal of Biobased Materials and Bioenergy, 2024, 18(2), 192.
26 Li P S, Wang Q. Journal of Liaocheng University(Nat. Sci. ) 2019, 32(3), 46 (in Chinese).
李沛珅, 王强. 聊城大学学报(自然科学版), 2019, 32(3), 46.
27 Zhang F, Xiao X, Xiao Y. Journal of Alloys and Compounds, 2022, 923, 166417.
28 Liu K, Tian W, Hui B, et al. Materials Science and Engineering R, 2024, 160, 100827.
29 Dai Y, Liu M, Li J, et al. Separation Science and Technology, 2019, 55(5), 1005.
30 Sehaqui H, Zhou Q, Ikkala O, et al. Biomacromolecules, 2011, 12(10), 3638.
31 Yang Y. Research on lignin deposition, quantification and pretreatment of stem cell wall lignin of several herbaceous plants. Master’s Thesis, Lanzhou University, China, 2016(in Chinese)
杨阳. 几种草本植物茎细胞壁木质素沉积、定量和预处理研究. 硕士学位论文, 兰州大学, 2016.
32 Wang S, Cheng A, Liu F, et al. Industrial Chemistry and Materials, 2023, 1(2), 188.
33 Huang Z W, Guo W Q, Jiang Z, et al. Journal of Molecular Catalysis, 2019, 33(1), 10 (in Chinese).
黄政文, 郭伟琦, 江治, 等. 分子催化, 2019, 33(1), 10.
34 Tai R, Gao S, Tang Y, et al. Small, 2024, 20(29), 2310785.
35 Zhong Y, Wang Y, Miao X D, et al. Advances in Environmental Protection, 2019, 9(5), 657.
钟艺, 王燕, 缪旭东, 等. 环境保护前沿, 2019, 9(5), 657.
36 Tayyebi A, Soltani T, Lee B K. Journal of Colloid and Interface Science, 2018, 534, 37.
[1] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[2] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[3] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[4] 梁红玉, 许佳智, 李政, 陆光, 王斌, 李桐宇, 刘玉佳. 广谱响应Cu2(OH)2CO3/g-C3N4异质结的构建及其光催化四环素的降解:降解途径及反应机理[J]. 材料导报, 2025, 39(19): 24080035-6.
[5] 刘奇, 赵莉, 沈冰, 马子伦, 陆佳林, 曲雯雯. Z型分级微球Bi2WO6/CdS/rGO的微波合成及光催化性能研究[J]. 材料导报, 2025, 39(18): 24090195-8.
[6] 樊明昂, 谢潇琪, 冯丽, 杜红莉, 刘超. Mo2C修饰ZnCdS材料的制备及光催化产氢性能研究[J]. 材料导报, 2025, 39(17): 24050186-6.
[7] 路浩源, 穆锐, 仙光, 蒋昊洋, 刘杰. 金属单原子锚定g-C3N4光催化剂降解水体有机污染物的研究进展[J]. 材料导报, 2025, 39(17): 24050247-17.
[8] 唐瑞欣, 朱子琪, 王玲, 杨培, 周晓燕. 光催化解聚木质素及其模型化合物的研究进展[J]. 材料导报, 2025, 39(16): 24080059-11.
[9] 李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
[10] 张晓君, 韦慧珍, 王维雪, 孙墨杰. WO3复合Eu掺杂g-C3N4催化剂的制备及光催化降解氧氟沙星[J]. 材料导报, 2025, 39(13): 24050169-5.
[11] 何静娴, 刘建霞, 缑浩. 光热催化产氢技术的进展与讨论[J]. 材料导报, 2025, 39(11): 24010063-8.
[12] 于慧敏, 郭少红, 贾美林, 贾晶春, 常迎. 硫族半导体催化剂用于高效光催化CO2还原的研究进展[J]. 材料导报, 2025, 39(10): 24040169-9.
[13] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[14] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[15] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed