Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100167-12    https://doi.org/10.11896/cldb.24100167
  金属与金属基复合材料 |
面向存储和神经形态计算应用的CBRAM发展综述
杨瀚1,2, 刘国柱1,2,3,*, 魏轶聃1,2, 赵伟1,2,3, 魏应强1,2, 周颖1,2, 隋志远1,2, 刘美杰1,2, 尤兴宇1,2, 魏敬和1,2,3
1 中国电子科技集团公司第五十八研究所,江苏 无锡 214035
2 集成电路与微系统全国重点实验室,江苏 无锡 214035
3 空天集成电路与微系统工信部重点实验室,南京 211106
A Review of CBRAM Development for Memory and Neuromorphic Computing Applications
YANG Han1,2, LIU Guozhu1,2,3,*, WEI Yidan1,2, ZHAO Wei1,2,3, WEI Yingqiang1,2, ZHOU Ying1,2, SUI Zhiyuan1,2, LIU Meijie1,2, YOU Xingyu1,2, WEI Jinghe1,2,3
1 The 58th Research Institute of China Electronics Technology Group Corporation, Wuxi 214035, Jiangsu, China
2 National Key Laboratory of Integrated Circuits and Microsystems, Wuxi 214035, Jiangsu, China
3 Key Laboratory of Aerospace Integrated Circuits and Microsystem, Ministry of Industry and Information Technology, Nanjing 211106, China
下载:  全 文 ( PDF ) ( 37482KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 导电桥式随机存储器(CBRAM)作为一种新兴的非易失性存储器技术,近年来在半导体存储领域引起了广泛关注。随着物联网(IoT)、可穿戴设备、移动计算等应用的快速发展,对存储器的性能、功耗、尺寸和成本提出了更高的要求,CBRAM等新一代存储器技术应运而生。本文阐述了CBRAM的基本概念与基本结构;详细分析了不同介质层中导电细丝的形成机理;对比了不同电极材料和介质层材料制备的器件电学性能的差异;介绍了CBRAM在存储器及神经形态计算领域的应用;总结了忆阻器面临的挑战并对未来的进一步发展提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨瀚
刘国柱
魏轶聃
赵伟
魏应强
周颖
隋志远
刘美杰
尤兴宇
魏敬和
关键词:  导电桥式随机存储器  阻变机制  介质层材料  电极材料  存储器  神经形态计算    
Abstract: As an emerging non-volatile memory technology, conductive bridge random access memory (CBRAM) has attracted extensive attention in the semiconductor memory field in recent years. With the rapid development of applications such as the Internet of Things (IoT), wearable devices, and mobile computing, higher requirements have been imposed on the performance, power consumption, size, and cost of memories. Consequently, new-generation memory technologies like CBRAM have emerged. This paper elaborates on the basic concepts and structures of CBRAM; it conducts a detailed analysis of the formation mechanisms of conductive filaments in different dielectric layers; it compares the electrical performance differences of devices fabricated with different electrode materials and dielectric layer materials; it introduces the applications of CBRAM in the fields of memory and neuromorphic computing; and it summarizes the challenges faced by CBRAMs and provides suggestions for their further development.
Key words:  conductive bridge random access memory    resistance switching mechanism    dielectric layer material    electrode material    memory    neuromorphic computing
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TN389  
基金资助: 国家自然科学基金(U24B6015;62204233;62174150);江苏省重点研发计划(BE2023005);“太湖之光”科技攻关(K20221055);集成电路与微系统全国重点实验室(JCYQ2310803-1)
通讯作者:  *刘国柱,博士,中国电子科技集团公司第五十八研究所研究员、硕士研究生导师。目前主要从事抗辐照反熔丝、FLASH等方向器件及工艺研究。gzliucetc@163.com   
作者简介:  杨瀚,中国电子科技集团公司电子科学研究院硕士研究生,在刘国柱研究员的指导下进行研究。目前主要研究领域为导电桥式随机存储器。
引用本文:    
杨瀚, 刘国柱, 魏轶聃, 赵伟, 魏应强, 周颖, 隋志远, 刘美杰, 尤兴宇, 魏敬和. 面向存储和神经形态计算应用的CBRAM发展综述[J]. 材料导报, 2025, 39(21): 24100167-12.
YANG Han, LIU Guozhu, WEI Yidan, ZHAO Wei, WEI Yingqiang, ZHOU Ying, SUI Zhiyuan, LIU Meijie, YOU Xingyu, WEI Jinghe. A Review of CBRAM Development for Memory and Neuromorphic Computing Applications. Materials Reports, 2025, 39(21): 24100167-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100167  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100167
1 Lee M J, Lee C B, Lee D, et al. Nature Materials, 2011, 10(8), 625.
2 Cheng C H, Tsai C Y, Chin A, et al. In: 2010 International Electron Devices Meeting. San Francisco, 2010, pp.19. 4. 1.
3 Torrezan A C, Strachan J P, Medeiros-Ribeiro G, et al. Nanotechnology, 2011, 22(48), 485203.
4 Waser R, Dittmann R, Staikov G, et al. Advanced Materials, 2009, 21(25-26), 2632.
5 Wedig A, Luebben M, Cho D Y, et al. Nature Nanotechnology, 2016, 11(1), 67.
6 Yan X B, Qin C Y, Lu C, et al. ACS Applied Materials & Interfaces, 2019, 11(51), 48029.
7 Waser R. Microelectronic Engineering, 2009, 86(7-9), 1925.
8 Yoon J H, Song S J, Yoo I H, et al. Advanced Functional Materials, 2014, 24(32), 5086.
9 Pan R, Li J, Zhuge F, et al. Applied Physics Letters, 2016, 108(1), 013504.
10 Hu L, Yang J, Wang J, et al. Advanced Functional Materials, 2021, 31(4), 2005582.
11 Yang J, Hu L, Shen L, et al. Fundamental Research, 2024, 4(1), 158.
12 Hu L, Shao J, Wang J, et al. Applied Physics Reviews, 2024, 11(1), 011411.
13 Valov I, Waser R, Jameson J R, et al. Nanotechnology, 2011, 22(25), 254003.
14 Yuan J H. Theory research on the materials and resistance mechanism of memristor. Master’s Thesis, Huazhong University of Science and Technology, China, 2020 (in Chinese).
袁俊辉. 忆阻器材料与阻变机理的理论研究. 硕士学位论文, 华中科技大学, 2020.
15 Imanishi Y, Kida S, Nakaoka T. AIP Advances, 2016, 6(7), 075003.
16 Zhuge F, Li K, Fu B, et al. AIP Advances, 2015, 5(5), 057125.
17 Arita M, Ohno Y, Takahashi Y. Physica Status Solidi A, 2016, 213(2), 306.
18 Belmonte A, Celano U, Redolfi A, et al. IEEE Transactions on Electron Devices, 2015, 62(6), 2007.
19 Tsuruoka T, Valov I, Tappertzhofen S, et al. Advanced Functional Materials, 2015, 25(40), 6374.
20 Peng S, Zhuge F, Chen X, et al. Applied Physics Letters, 2012, 100(7), 072101.
21 Jeon Y R, Akinwande D, Choi C. Nanoscale Horizons, 2024, 9(5), 853.
22 Liu Q, Sun J, Lv H, et al. Advanced Materials, 2012, 24(14), 1844.
23 Nail C, Molas G, Blaise P, et al. IEEE Transactions on Electron Devices, 2017, 64(11), 4479.
24 Yang Y, Gao P, Gaba S, et al. Nature Communications, 2012, 3, 732.
25 Tian X, Yang S, Zeng M, et al. Advanced Materials, 2014, 26(22), 3649.
26 Yang Y, Gao P, Li L, et al. Nature Communications, 2014, 5, 4232.
27 Li Y. Theoretical investigation of the filament morphology in conductive bridge random access memories, Master’s Thesis, Huazhong University of Science and Technology, China, 2019 (in Chinese).
李云. CBRAM中导电丝形成机理的研究. 硕士学位论文, 华中科技大学, 2020.
28 Deng Y F, Wei Z J, Wang D. Computer Engineering & Science, 2022, 44(1), 36 (in Chinese).
邓亚峰, 魏子健, 王栋. 计算机工程与科学, 2022, 44(1), 36.
29 Abbas H, Li J, Ang D S. Micromachines, 2022, 13(5), 725.
30 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453(7191), 80.
31 Kim D W, Kwon K H, Kim H J, et al. In: Electrochemical Society Meeting Abstracts 235. Dallas, 2019, pp. 1169.
32 Ryu J H, Kim S. Chaos, Solitons & Fractals, 2020, 140, 110236.
33 Apsangi P, Barnaby H, Kozicki M, et al. Neuromorphic Computing and Engineering, 2022, 2(2), 021002.
34 Ye F, Kiani F, Huang Y, et al. Advanced Materials, 2023, 35(37), 2204778.
35 Maudet F, Hammud A, Wollgarten M, et al. Nanotechnology, 2023, 34(24), 245203.
36 Cao H, Ren H. Applied Physics Letters, 2022, 120(13), 133502.
37 Fujii S, Incorvia J A C, Yuan F, et al. IEEE Electron Device Letters, 2017, 39(1), 23.
38 Liu Y, Gao J, Wu F, et al. IEEE Transactions on Electron Devices, 2021, 68(5), 2568.
39 Hsu C L, Saleem A, Singh A, et al. IEEE Transactions on Electron Devices, 2021, 68(11), 5578.
40 Yuan H, Wan T, Bai H. Electronics, 2023, 12(6), 1471.
41 Sun Y, Song C, Yin S, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29481.
42 Apsangi P, Chamele N, Bamaby H J, et al. IEEE Transactions on Nuclear Science, 2023, 70(12), 2572.
43 Ali A, Abbas H, Hussain M, et al. Applied Materials Today, 2022, 29, 101554.
44 Ali A, Abbas H, Li J, et al. Applied Physics Letters, 2023, 122(20), 203503.
45 Zhao X, Liu S, Niu J, et al. Small, 2017, 13(35), 1603948.
46 Xie J. Two dimensional materials based memristors for in-memory computing and neuromorphic computing. Ph. D. Thesis, Arizona State University, USA, 2023.
47 Jeon Y R, Choi J, Kwon J D, et al. ACS Applied Materials & Interfaces, 2021, 13(8), 10161.
48 Desai T R, Kundale S S, Dongale T D, et al. ACS Applied Bio Materials, 2023, 6(5), 1763.
49 Sakellaropoulos D, Bousoulas P, Papakonstantinopoulos C, et al. IEEE Transactions on Electron Devices, 2021, 68(4), 1598.
50 Chen W, Fang R, Balaban M B, et al. Nanotechnology, 2016, 27(25), 255202.
51 Kumar D, Aluguri R, Chand U, et al. Nanotechnology, 2018, 29(12), 125202.
52 Sakellaropoulos D, Bousoulas P, Papakonstantinopoulos C, et al. IEEE Electron Device Letters, 2020, 41(7), 1013.
53 Lu B, Du J, Lu J, et al. ACS Materials Letters, 2023, 5(5), 1350.
54 Jin M M, Cheng L, Li Y, et al. Nanotechnology, 2018, 29(38), 385203.
55 Kwon O, Shin J, Chung D, et al. Ceramics International, 2022, 48(20), 30482.
56 Mamberti R, Benevent E, Bocquet M, et al. IEEE Journal on Flexible Electronics, DOI: 10. 1109/JFLEX. 2024. 3505072.
57 Ghafoor F, Kim H, Ghafoor B, et al. Journal of Colloid and Interface Science, 2024, 659, 1.
58 Shi Y, Nguyen L, Oh S, et al. Nature Communications, 2018, 9(1), 5312.
59 Sakamoto T, Sunamura H, Kawaura H, et al. Applied Physics Letters, 2003, 82(18), 3032.
60 Tada M, Sakamoto T, Okamoto K, et al. In: 2010 International Electron Devices Meeting. San Francisco, 2010, pp. 16. 5. 1.
61 Gonzalez-Velo Y, Mahmud A, Chen W, et al. IEEE Transactions on Nuclear Science, 2016, 63(4), 2145.
62 https://www. eenewseurope. com/en/microsemi-named-as-reram-licensee/.
63 https://www. skywatertechnology. com/weebit-and-skywater-announce-agreement-to-take-reram-technology-to-volume-production/.
64 https://www. innostar-semi. com/index. php?s=news&c=show&id=25.
65 https://www. weebit-nano. com/news/press-releases/weebit-nano-receives-wafers-manufactured-in-globalfoundries-22fdx-process/.
66 Chen W, Barnaby H J, Kozicki M N, et al. IEEE Transactions on Nuclear Science, 2015, 62(6), 2404.
67 Wu F, Si S, Cao P, et al. Advanced Electronic Materials, 2019, 5(4), 1800747.
68 Khot A C, Dongale T D, Nirmal K A, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10546.
69 Hyun G, Alimkhanuly B, Seo D, et al. Small, 2024, 20, 2310943.
70 Guo W B, Wang Z Q, Wu Z H, et al. Electronics & Packaging, 2024, 24(4), 40401 (in Chinese).
郭文斌, 汪泽清, 吴祖恒, 等. 电子与封装, 2024, 24(4), 40401.
71 Cho H, Kim S. Nanomaterials, 2020, 10(9), 1709.
72 Wang J, Cao G, Sun K, et al. Nanoscale, 2022, 14(4), 1318.
73 Wu Y, Cai F, Thomas L, et al. In: 2022 International Electron Devices Meeting. San Francisco, 2022, pp. 18. 4. 1.
74 Shi Y, Oh S, Park J, et al. Neuromorphic Computing and Engineering, 2023, 3(3), 034007.
75 Sharma D, Rath S P, Kundu B, et al. Nature, 2024, 633(8030), 560.
76 Chung C, Choi C. Materials Science in Semiconductor Processing, 2024, 179, 108471.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 王相雅, 周琦, 冉奋. 面向植入式生物电子的PEDOT基电极材料[J]. 材料导报, 2025, 39(20): 24050069-13.
[3] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[4] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[5] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[6] 施纯言, 张程, 毕冉, 李毅翔, 何瑞钰, 袁俊尉, 李阳. 基于新型有机-无机杂化材料的忆阻器在人工突触与神经形态计算领域的应用研究进展[J]. 材料导报, 2025, 39(14): 23080054-13.
[7] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[8] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[9] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[10] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[11] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[12] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[13] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[14] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[15] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed