Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100165-8    https://doi.org/10.11896/cldb.24100165
  无机非金属及其复合材料 |
基于改性多孔埃洛石纳米管制备混合基质膜强化CO2/CH4分离性能
吴威1,2, 梁文举1,2, 王丽增1,2, 朱伟芳1,2,*, 郭瑞丽1,2,*
1 石河子大学化学化工学院,新疆 石河子 832003
2 化工绿色过程省部共建国家重点实验室培育基地,新疆 石河子 832003
Development of Mixed Matrix Membranes Utilizing Modified Porous Halloysite Nanotubes to Enhance the Separation Efficiency of CO2/CH4
WU Wei1,2, LIANG Wenju1,2, WANG Lizeng1,2, ZHU Weifang1,2,*, GUO Ruili1,2,*
1 School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
2 State Key Laboratory Incubation Base for Green Process of Chemical Engineering, Shihezi 832003, Xinjiang, China
下载:  全 文 ( PDF ) ( 26691KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 埃洛石(HNTs)是由[AlO6]、[SiO4]构成的硅铝酸盐片层卷曲而成,拥有天然的中空纳米管道,因具有极高的生物相容性在气体分离领域受到广泛关注。为了提高HNTs基混合基质膜(MMMs)的气体分离性能,基于HNTs内外结构的组成差异及表面电荷性质,首先使用氢氧化钠(NaOH)对其进行前处理,然后利用氢氟酸(HF)对处理后的HNTs纳米管进行扩孔,最后在酸碱蚀刻后的HNTs表面原位聚合形成聚合物涂层,得到聚合物多孔纳米管PEI@EHNTs。将其作为填充剂掺入到聚醚聚酰胺共聚物(Pebax 1657)中制备MMMs用于CO2/CH4分离。性能数据显示,当PEI@EHNTs填充量为4%(质量分数,下同)时,MMMs的气体分离性能最佳。干态混合气测试条件下Pebax/PEI@EHNTs的CO2渗透率为(381.38±7.7) Barrer,CO2/CH4选择性为17.99±0.84,相比于纯膜分别提高了211.94%和34.25%。湿态混合气测试条件下Pebax/PEI@EHNTs的CO2渗透率和CO2/CH4选择性分别为(733.21±30.81) Barrer和53.74±3.58,相比于纯膜分别提高了83.30%和61.74%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴威
梁文举
王丽增
朱伟芳
郭瑞丽
关键词:  埃洛石纳米管  混合基质膜  Pebax  CO2分离    
Abstract: Halloysite nanotubes (HNTs), consisting of [AlO6] and [SiO4] silicoaluminate sheets, possess a natural hollow nano-channel and have garnered significant attention in the gas separation field due to their exceptional biocompatibility. To enhance the gas separation performance of HNTs-based mixed matrix membranes (MMMs), the compositional disparities in the inner and outer structures of HNTs as well as their surface charge properties were taken into account. Initially, sodium hydroxide (NaOH) was employed for selective etching of the HNTs, followed by treatment with hydrofluoric acid (HF) to enlarge the pores of the HNT nanotubes post-alkali etching. Subsequently, a polymer coating was in-situ polymerized on the surface of acid-and alkali-etched HNTs to produce porous polymer nanotubes, designated as PEI@EHNTs. These PEI@EHNTs were then utilized as fillers and incorporated into polyether polyamide copolymer (Pebax 1657) to fabricate MMMs for CO2/CH4 separation. Performance data demonstrated that when the filler content of PEI@EHNTs was 4wt%, optimal gas separation performance was achieved by the MMMs. Under dry mixed gas testing conditions, the CO2 permeability and CO2/CH4 selectivity of Pebax/PEI@EHNTs membrane were (381.38±7.7) Barrer and 17.99±0.84 respectively, representing an increase of 211.94% and 34.25% compared to pure membrane performance. Under wet mixed gas testing conditions, the CO2 permeability and CO2/CH4 selectivity of the Pebax/PEI@EHNTs membrane exhibited a significant increase of 83.30% and 61.74% over the pure membrane, reaching (733.21±30.81) Barrer and 53.74±3.58, respectively.
Key words:  halloysite nanotubes    mixed matrix membrane    Pebax    CO2 separation
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TQ028.8  
基金资助: 兵团重点领域科技攻关计划项目(2023AB011)
通讯作者:  *朱伟芳,工学博士,石河子大学副教授。主要从事膜材料制备及应用领域的研究。wfzhu5555@163.com
郭瑞丽,工学博士,石河子大学教授。主要从事膜材料、膜分离技术及应用领域的研究。grli@shzu.edu.cn   
作者简介:  吴威,石河子大学化学化工学院硕士研究生,在郭瑞丽教授和朱伟芳副教授的指导下进行研究。目前主要研究领域为气体膜分离。
引用本文:    
吴威, 梁文举, 王丽增, 朱伟芳, 郭瑞丽. 基于改性多孔埃洛石纳米管制备混合基质膜强化CO2/CH4分离性能[J]. 材料导报, 2025, 39(21): 24100165-8.
WU Wei, LIANG Wenju, WANG Lizeng, ZHU Weifang, GUO Ruili. Development of Mixed Matrix Membranes Utilizing Modified Porous Halloysite Nanotubes to Enhance the Separation Efficiency of CO2/CH4. Materials Reports, 2025, 39(21): 24100165-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100165  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100165
1 Friedlingstein P, O’Sullivan M, Jones M W, et al. Earth System Science Data, 2023, 15(12), 5301.
2 Baker R W, Low B T. Macromolecules, 2014, 47(20), 6999.
3 Chuah C Y, Jiang X, Goh K, et al. Membranes, 2021, 11(9), 666.
4 Janakiram S, Ahmadi M, Dai Z, et al. Membranes, 2018, 8(2), 24.
5 Vinoba M, Bhagiyalakshmi M, Alqaheem Y, et al. Separation and Purification Technology, 2017, 188, 431.
6 Wang Q, Dai Y, Ruan X, et al. Journal of Membrane Science, 2021, 630, 199323.
7 Wang B, Sheng M, Xu J, et al. Small Methods, 2020, 4(3), 19000749.
8 Yuan X T, Xu C X, Geng H Z, et al. Journal of Hazardous Materials, 2020, 384, 120978.
9 Ge L, Lin R, Wang L, et al. Separation and Purification Technology, 2017, 173, 63.
10 Xiang L, Pan Y, Zeng G, et al. Journal of Membrane Science, 2016, 500, 66.
11 Zheng W, Li Z, Sun T, et al. Journal of Membrane Science, 2022, 650, 120330.
12 Yang Y, Chen Y, Leng F, et al. Applied Sciences, 2017, 7(12), 1215.
13 Park S, Ryu J, Cho H Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129750.
14 Surya M R, Padaki M, Matsuura T, et al. Separation and Purification Technology, 2014, 132, 187.
15 Niu M, Yang H, Zhang X, et al. ACS Applied Materials & Interfaces, 2016, 8(27), 17312.
16 Hou M J, Zhang X R, Wang Y H, et al. CIESC Journal, 2018, 69(9), 4106 (in Chinese).
侯蒙杰, 张新儒, 王永洪, 等. 化工学报, 2018, 69(9), 4106.
17 Sun Y Y, Zhu W F, Gou M M, et al. Materials Reports, 2021, 35(6), 6174 (in Chinese).
孙延勇, 朱伟芳, 缑敏敏, 等. 材料导报, 2021, 35(6), 6174.
18 White R D, Bavykin D V, Walsh F C. Nanotechnology, 2012, 23(6), 065705.
19 Xing H Y. Study of silanization on acid-treated halloysite nanotubes. Master’s Thesis, Inner Mongolia University, China, 2020 (in Chinese).
邢浩云. 酸活化埃洛石纳米管表面有机硅烷化改性研究. 硕士学位论文, 内蒙古大学, 2020.
[1] 何兆益, 谭洋伟, 李家琪, 张权, 吴逸飞. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 20110080-8.
[2] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[3] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[4] 于桐, 邵文尧, 洪专, 吴晨溥, 沈路钫, 谢全灵. 石墨烯量子点在分离膜材料中的应用研究进展[J]. 材料导报, 2021, 35(21): 21143-21150.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed