Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090095-7    https://doi.org/10.11896/cldb.24090095
  无机非金属及其复合材料 |
微波养护期间磨细粉煤灰碱激发胶凝材料的强度发展
朱绘美, 刘毓, 李辉*
西安建筑科技大学材料科学与工程学院,西安 710055
Strength Development of Alkali-activated Binders Prepared with Mechanically Ground Fly Ash During Microwave-curing
ZHU Huimei, LIU Yu, LI Hui
College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 33990KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波养护和机械粉磨粉煤灰都是改善碱激发粉煤灰(AAFA)胶凝材料早期性能的有效方法,将这两种方法结合起来,分别以原状粉煤灰、中细粉煤灰和超细粉煤灰制备AAFA胶凝材料,并采用五段控温微波养护制度进行热养护。结果表明,原状AAFA试件的抗压强度在微波养护初期达到最高,在第二阶段达到28 MPa。中细AAFA试件在微波养护至4-I阶段时抗压强度最高,达60 MPa,比原状AAFA的峰值强度高26%,这是由于粉煤灰比表面积增大,加速了硅和铝从前驱体中的溶解,并随后形成大量N-A-S-H凝胶,同时二次产物纳米级沸石晶体填充了无定形产物之间的微小间隙,从而显著改善了其微观结构。然而,由于超细粉煤灰以碎片状颗粒为主且需水量大,影响了AAFA试件的吸波效率,其在微波养护过程中的抗压强度始终最低。与蒸汽养护相比,超细、中细和原状AAFA在微波热养护结束时的强度分别提高约32%、59%、172%。研究阐明了微波养护与粉煤灰机械粉磨在促进AAFA胶凝材料早期抗压强度发展方面具有相容性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱绘美
刘毓
李辉
关键词:  碱激发粉煤灰胶凝材料  微波养护  粒径  抗压强度    
Abstract: Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash (AAFA) binders. This study combined these two approaches by synthesizing AAFA using original, medium-fine, and ultrafine fly ash as precursors, and then specimens were cured with a five-stage temperature-controlled microwave. The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing, reaching 28 MPa at stage 2. Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I, which is 26% higher than the peak strength of original AAFA. It is attributed to the significant rise in their specific surface area, which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels. Additionally, nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products, thereby significantly improving their microstructure. In contrast, ultrafine fly ash, primarily composed of fragmented particles, necessitated a substantial amount of water, which adversely affects the absorption efficiency for microwave of AAFA specimens. Thus, ultrafine AAFA specimens consistently exhibit the lowest compressive strength. Specifically, at the end of curing, the compressive strength of these three specimens with microwave-curing is approximately 32%, 59%, and 172% higher than that of the steam-cured sample, respectively. These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.
Key words:  alkali-activated fly ash binder    microwave-curing    particle size    compressive strength
发布日期:  2025-10-27
ZTFLH:  TQ172.79  
基金资助: 国家自然科学基金(52308278);陕西省重点研发计划 (2023-YBGY-498;2024GX-YBXM-373);陕西省教育厅科学研究计划重点项目(23JY044); 榆林市科技项目 (CXY-2020-059)
引用本文:    
朱绘美, 刘毓, 李辉. 微波养护期间磨细粉煤灰碱激发胶凝材料的强度发展[J]. 材料导报, 2025, 39(20): 24090095-7.
ZHU Huimei, LIU Yu, LI Hui. Strength Development of Alkali-activated Binders Prepared with Mechanically Ground Fly Ash During Microwave-curing. Materials Reports, 2025, 39(20): 24090095-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090095  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090095
1 Palomo, A, Grutzeck M W, Blanco M T. Cement and Concrete Research, 1999, 29(8), 1323.
2 Seo J, Bae S J, Jang D I, et al. Cement and Concrete Composites, 2020, 106, 103462.
3 Monticelli C, Natali M E, Balbo A, et al. Cement and Concrete Research, 2016, 80, 60.
4 Siddique S, Jang J. Construction and Building Materials, 2021, 281, 122601.
5 Puertas F, Martínez-Ramírez S, Alonso S, et al. Cement and Concrete Research, 2000, 30(10), 1625.
6 Somna K, Jaturapitakkul Ch, Kajitvichyanukul P, et al. Fuel, 2011, 90(6), 2118.
7 Shi J, Liu B, Zhou F, et al. Construction and Building Materials, 2021, 281, 122562.
8 Tan J, Cai J, Huang L, et al. Construction and Building Materials, 2020, 262, 120897.
9 El-Feky M S, Kohail M, El-Tair A M, et al. Construction and Building Materials, 2020, 233, 117268.
10 Sun Y, Hu S, Zhang P, et al. Journal of Cleaner Production, 2020, 272, 122957.
11 Somaratna J, Ravikumar D, Neithalath N. Cement and Concrete Research, 2010, 40(12), 1688.
12 Graytee A, Sanjayan J G, Nazari A. Ceramics International, 2018, 44(7), 8216.
13 Onutai S, Jiemsirilers S, Thavorniti P, et al. Ceramics International, 2016, 42, 9866.
14 Zhao J, Wang D, Wang X, et al. Construction and Building Materials, 2015, 78, 250.
15 Sun Y, Lee H. Construction and Building Materials, 2020, 261, 119935.
16 Paul K T, Satpathy S K, Manna I, et al. Nanoscale Research Letters, 2007, 2(8), 397.
17 Faiz Uddin Ahmed Shaikh, Steve W. M. Supit. Construction and Building Materials, 2015, 82, 192.
18 Chindaprasirt P, Homwuttiwong S, Sirivivatnanon V. Cement and Concrete Research, 2004, 34, 1087.
19 Aydın S, Karatay Ç, Baradan B. Powder Technology, 2010, 197(1-2), 68.
20 Zhu H, Liang G, Xu J, et al. Construction and Building Materials, 2019, 208, 394.
21 Yang Y, Li H, Zheng W. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 205.
22 Zong Y, Wan Q, Cang D. Ceramics International, 2019, 45(17), 22445.
23 Yıldız K, Atakan M. Construction and Building Materials, 2020, 262, 120448.
24 Hu T, Kou L, Yang L, et al. Powder Technology, 2021, 377, 739.
25 Tian Sh, Guo L, Gu Y, et al. Desalination and Water Treatment, 2021, 511, 115095.
26 Hsu S, Chi M, Huang R. Construction and Building Materials, 2018, 176, 250.
27 Peng F, Niu Y, Gao K, et al. Measurement, 2019, 139, 346.
28 Fujii T, Kashimura K, Tanaka H. Journal of Hazardous Materials, 2019, 369, 318.
29 Król M, Roek P, Chlebda D, et al. Solid State Sciences, 2019, 94, 114.
30 Yang L, Qian X, Yuan P, et al. Journal of Cleaner Production, 2018, 212, 250.
31 Wang P, Sun Q, Zhang Y, et al. Inorganic Chemistry Communications, 2019, 111, 107639.
32 Criado M, Fernández-Jiménez A, Palomo A. Microporous and Mesoporous Materials, 2007, 106(1-3), 180.
33 Aboulayt A, Souayfan F, Roziere E, et al. Construction and Building Materials, 2020, 260, 120510.
34 Goswami A P. Ceramics International, 2021, 47(20), 29109.
35 Palacios M, Alonso M M, Varga C, et al. Cement and Concrete Compo-sites, 2019, 95, 277.
36 Samantasinghar S, Singh S. Construction and Building Materials, 2020, 235, 117481.
37 Kim B, Yi C, Kang K. Construction and Building Materials, 2015, 98, 465.
[1] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 黄斌彬, 曾磊, 汪超, 孙良福, 胡高兴. 基于Bi-LSTM与改进NSGAIII的混凝土配合比多目标优化[J]. 材料导报, 2025, 39(19): 24090069-8.
[4] 任才富, 王栋民, 房奎圳, 王吉祥, 李晓慧, 张信龙. 硫铝水泥改性固废基胶凝材料性能与水化进程研究[J]. 材料导报, 2025, 39(18): 24090006-8.
[5] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[6] 郭长旭, 李晓丽, 解卫东, 李大虎, 王靖丰, 赵晓泽. 电石渣-矿渣基砒砂岩复合土强度及微观机理研究[J]. 材料导报, 2025, 39(17): 24070063-8.
[7] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[8] 杨旭, 张海波, 师广岭, 侯成岩, 周伟. 粉磨原位合成PCE对自减水型水泥性能的影响[J]. 材料导报, 2025, 39(10): 24010074-7.
[9] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[10] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[11] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[12] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[13] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[14] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[15] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed